首页> 外文期刊>Advanced Functional Materials >Silicon Nanofibrils on a Flexible Current Collector for Bendable Lithium-Ion Battery Anodes
【24h】

Silicon Nanofibrils on a Flexible Current Collector for Bendable Lithium-Ion Battery Anodes

机译:可弯曲锂离子电池阳极柔性集电器上的硅纳米原纤维

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A high-energy-capacity, flexible lithium-ion battery is fabricated using a new nanofibril-structured silicon anode on a flexible current collector. Silicon is known to be the highest capacity anode material. However, its huge volume changes during the lithium insertion and extraction results in pulverization, which is the cause of the rapid capacity fade that occurs as the charge-discharge cycles progress. Nanostructured silicon can overcome this pulverization problem. A flexible current collector with high electric conductivity is prepared by a RF-magnetron sputtering of a thin copper layer (<1 μm) onto a porous polymeric membrane. This provides not only flexibility of the electrode but also a template for simple fabrication of nanostructured silicon. Cells using the new, flexible current collector and corresponding silicon nanofibril-structured anode exhibit energy capacities over 2000 mAh g~-1 during 30 charge-discharge cycles at C/2. In addition, the coulombic efficiency remains over 99% after the third cycle. These results demonstrate the potential of the new anode for use in commercial high-capacity, flexible lithium-ion batteries.
机译:在柔性集电器上使用新型纳米纤维结构的硅阳极制造高能量容量的柔性锂离子电池。已知硅是容量最高的阳极材料。但是,在锂的插入和提取过程中其巨大的体积变化会导致粉化,这是随着充放电循环的进行而发生快速容量衰减的原因。纳米结构的硅可以克服这种粉碎问题。通过将薄铜层(<1μm)进行射频磁控溅射到多孔聚合物膜上,可以制备出具有高电导率的柔性集电器。这不仅提供了电极的柔性,而且还提供了用于简单制造纳米结构硅的模板。使用新型柔性集电器和相应的硅纳米原纤维结构阳极的电池在C / 2的30个充放电循环中表现出超过2000 mAh g〜-1的能量容量。另外,在第三循环之后,库仑效率保持超过99%。这些结果证明了这种新型阳极用于商业大容量,柔性锂离子电池的潜力。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第17期|2108-2114|共7页
  • 作者单位

    Division of Advanced Materials Engineering Kongju National University 1223-24, Cheonan-daero, Seobuk-gu Cheonan, Chungnam, 331-717, Korea;

    Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea;

    Department of Applied Chemistry Hanbat National University Deokmyoung-dong, Yuseong-gu, Daejeon, 305-719, Korea;

    Power Control Device Research Team Electronics and Telecommunications Research Institute (ETRI), 218, Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea;

    Power Control Device Research Team Electronics and Telecommunications Research Institute (ETRI), 218, Gajeongno, Yuseong-gu, Daejeon, 305-700, Korea;

    Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea;

    Division of Advanced Materials Engineering Kongju National University 1223-24, Cheonan-daero, Seobuk-gu Cheonan, Chungnam, 331-717, Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号