...
首页> 外文期刊>Advanced Functional Materials >Three-Dimensional Branched Nanowire Heterostructures as Efficient Light-Extraction Layer in Light-Emitting Diodes
【24h】

Three-Dimensional Branched Nanowire Heterostructures as Efficient Light-Extraction Layer in Light-Emitting Diodes

机译:三维分支纳米线异质结构作为发光二极管中的高效光提取层

获取原文
获取原文并翻译 | 示例
           

摘要

A facile method to fabricate three-dimensional branched ZnO/MgO nanowire heterostructures and their application as the efficient light-extraction layer in light-emitting diodes are reported. The branched MgO nanowires are produced on the hydrothermally-grown ZnO nanowires with a small tapering angle towards the tip (≈6°), by the oblique angle flux incidence of MgO. The structural evolution during the growth verifies the formation of the MgO nanoscale islands with strong (111) preferred orientation on very thin (5-7 nm) MgO (110) layer. The MgO nanobranches, then grown on the islands, are polycrystalline consisting of many grains oriented in specific directions of <200> and <220>, supported by the nucleation theory. The LEDs with the branched ZnO/MgO nanowire arrays show a remarkable enhancement in the light output power by 21% compared with that of LEDs with pristine ZnO nanowires. Theoretical calculations using a finite-difference time-domain method reveal that the nanostructure is very effective in breaking the wave-guiding mode inside the ZnO nanowires, extracting more light especially in radial direction through the MgO nanobranches.
机译:报道了一种制造三维支化ZnO / MgO纳米线异质结构的简便方法及其在发光二极管中作为高效光提取层的应用。通过MgO的斜角通量入射,在水热生长的ZnO纳米线上产生了分支的MgO纳米线,其朝向尖端的锥角较小(约6°)。生长过程中的结构演变验证了在非常薄的(5-7 nm)MgO(110)层上具有强(111)首选取向的MgO纳米岛的形成。然后在岛上生长的MgO纳米支是多晶,由成核理论支持的许多沿<200>和<220>特定方向取向的晶粒组成。与具有原始ZnO纳米线的LED相比,具有分支ZnO / MgO纳米线阵列的LED的光输出功率显着提高了21%。使用有限差分时域方法的理论计算表明,纳米结构在打破ZnO纳米线内部的波导模式方面非常有效,尤其是通过MgO纳米分支沿径向提取更多的光。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第22期|3384-3391|共8页
  • 作者单位

    School of Mechanical and Advanced Materials Engineering KIST-UNIST-Ulsan Center for Convergent Materials Ulsan National Institute of Science and Technology (UNIST) Ulsan 689-798, Korea;

    Department of Materials Science and Engineering Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk 790-784, Korea;

    School of Mechanical and Advanced Materials Engineering KIST-UNIST-Ulsan Center for Convergent Materials Ulsan National Institute of Science and Technology (UNIST) Ulsan 689-798, Korea;

    UNIST Central Research Facilities (UCRF) Ulsan National Institute of Science and Technology (UNIST) Ulsan 689-798, Korea;

    Department of Materials Science and Engineering Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk 790-784, Korea;

    Department of Materials Science and Engineering Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk 790-784, Korea;

    UNIST-Olympus Biomed Imaging Center (UOBC) Ulsan National Institute of Science and Technology (UNIST) Ulsan 689-798, Korea;

    Department of Chemistry & Nano Science Ewha Womans University Seoul 120-750, Korea;

    Department of Materials Science and Engineering Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk 790-784, Korea;

    School of Mechanical and Advanced Materials Engineering KIST-UNIST-Ulsan Center for Convergent Materials Ulsan National Institute of Science and Technology (UNIST) Ulsan 689-798, Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号