...
首页> 外文期刊>Advanced Functional Materials >On-Chip Fabrication of Paclitaxel-Loaded Chitosan Nanoparticles for Cancer Therapeutics
【24h】

On-Chip Fabrication of Paclitaxel-Loaded Chitosan Nanoparticles for Cancer Therapeutics

机译:紫杉醇负载壳聚糖纳米颗粒的片上制备用于癌症治疗。

获取原文
获取原文并翻译 | 示例

摘要

The use of solvent-free microfluidics to fine-tune the physical and chemical properties of chitosan nanopartides for drug delivery is demonstrated. Nanoparticle self-assembly is driven by pH changes in a water environment, which increases biocompatibility by avoiding organic solvent contamination common with traditional techniques. Controlling the time of mixing (2.5-75 ms) during nanoparticle self-assembly enables us to adjust nanoparticle size and surface potential in order to maximize cellular uptake, which in turn dramatically increases drug effectiveness. The compact nanostructure of these nanopartides preserves drug potency better than previous nanopartides, and is more stable during long-term circulation at physiological pH. However, when the nanopartides encounter a tumor cell and the associated drop in pH, the drug contents are released. Moreover, the loading efficiency of hydrophobic drugs into the nanopartides increases significantly from previous work to over 95%. The microfluidic techniques used here have applications not just for drug-carrying nanoparticle fabrication, but also for the better control of virtually any self-assembly process.
机译:演示了使用无溶剂微流控技术微调壳聚糖纳米颗粒的物理和化学性质以进行药物递送。纳米颗粒的自组装是由水环境中pH值的变化驱动的,通过避免传统技术常见的有机溶剂污染,纳米颗粒的自组装性提高了生物相容性。在纳米粒子自组装过程中控制混合时间(2.5-75毫秒)使我们能够调整纳米粒子的大小和表面电势,以最大化细胞摄取,进而显着提高药物效力。这些纳米粒子的紧凑纳米结构比以前的纳米粒子保留了更好的药效,并且在生理pH值下的长期循环中更稳定。但是,当纳米粒子遇到肿瘤细胞并伴随着pH下降时,药物成分就会释放出来。此外,疏水性药物到纳米颗粒中的负载效率从以前的工作显着提高到95%以上。此处使用的微流体技术不仅可以应用于载药纳米颗粒的制造,而且还可以更好地控制几乎任何自组装过程。

著录项

  • 来源
    《Advanced Functional Materials 》 |2014年第4期| 432-441| 共10页
  • 作者单位

    Laboratoire de Microsystemes (LMIS4) Institute of Microengineering Ecole Polytechnique Federale de Lausanne (EPFL) CH-1015, Lausanne, Switzerland,Department of Biomedical Engineering Amirkabir University of Technology Tehran, Iran;

    Laboratoire de Microsystemes (LMIS4) Institute of Microengineering Ecole Polytechnique Federale de Lausanne (EPFL) CH-1015, Lausanne, Switzerland,Department of Biomedical Engineering Amirkabir University of Technology Tehran, Iran,Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran, Iran;

    Laboratoire de Microsystemes (LMIS4) Institute of Microengineering Ecole Polytechnique Federale de Lausanne (EPFL) CH-1015, Lausanne, Switzerland;

    School of Materials Science and Engineering Georgia Institute of Technology and Emory University Atlanta, GA, 30332, USA;

    Department of Biomedical Engineering Amirkabir University of Technology Tehran, Iran;

    Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran, Iran;

    National Cell Bank of Iran Pasteur Institute of Iran, Tehran, Iran;

    National Cell Bank of Iran Pasteur Institute of Iran, Tehran, Iran;

    Laboratoire de Microsystemes (LMIS4) Institute of Microengineering Ecole Polytechnique Federale de Lausanne (EPFL) CH-1015, Lausanne, Switzerland;

    Laboratoire de Microsystemes (LMIS4) Institute of Microengineering Ecole Polytechnique Federale de Lausanne (EPFL) CH-1015, Lausanne, Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号