...
首页> 外文期刊>Advanced Functional Materials >Laser-Induced In-Fiber Fluid Dynamical Instabilities for Precise and Scalable Fabrication of Spherical Particles
【24h】

Laser-Induced In-Fiber Fluid Dynamical Instabilities for Precise and Scalable Fabrication of Spherical Particles

机译:激光诱导的光纤流体动力学不稳定性,可精确且可扩展地制备球形颗粒

获取原文
获取原文并翻译 | 示例

摘要

Scalable fabrication of spherical particles at both the micro- and nanoscales is of significant importance for applications spanning optical devices, electronics, targeted drug delivery, biodevices, sensors, and cosmetics. However, current top-down and bottom-up fabrication methods are unable to provide the full spectrum of uniformly sized, well-ordered, and high-quality spheres due to their inherent restrictions. Here, a generic, scalable, and precisely controllable fabrication method is demonstrated for generating spherical particles in a full range of diameters from microscale to nanoscale. This method begins with a macroscopic composite multimaterial solid-state preform drawn into a fiber that defines precisely the initial conditions for the process. It is then followed by CO2 laser heating to enable the transformation from a continuous fiber core into a series of homogeneous spheres via Plateau-Rayleigh capillary instability inside the fiber. This physical breakup method applies to a wide range of functional materials with different melting temperatures from 400 to 2400 K and 10 orders of difference in fiber core/cladding viscosity ratio. Furthermore, an ordered array of silicon-based whispering-gallery mode resonators with the Q factor as high as 7.1 x 10(5) is achieved, owing to the process induced ultrasmooth surface and highly crystalline nature.
机译:对于跨越光学设备,电子产品,靶向药物递送,生物设备,传感器和化妆品的应用,微米级和纳米级球形颗粒的可缩放制造都具有重要意义。然而,由于其固有的局限性,目前的自上而下和自下而上的制造方法无法提供完整尺寸的,有序的高质量球体的全部光谱。在此,展示了一种通用,可扩展且可精确控制的制造方法,该方法用于生成从微米级到纳米级的整个直径范围的球形颗粒。该方法从将宏观复合多材料固态预成型坯拉制成纤维开始,纤维预定义了该过程的初始条件。然后再进行CO2激光加热,以通过纤维内部的Plateau-Rayleigh毛细管不稳定性使连续纤维芯转变为一系列均匀球。这种物理分解方法适用于各种功能材料,这些材料的熔化温度从400到2400 K不等,纤芯/包层粘度比相差10个数量级。此外,由于工艺引起的超光滑表面和高度结晶的特性,Q值高达7.1 x 10(5)的硅基耳语画廊模式谐振器的有序阵列得以实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号