...
首页> 外文期刊>Advanced Functional Materials >Sonication-Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry
【24h】

Sonication-Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry

机译:超声辅助的具有陷阱态吸收特性的氧化镓悬浮液的合成:光化学测试

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Gallium is a near room temperature liquid metal with extraordinary properties that partly originate from the self-limiting oxide layer formed on its surface. Taking advantage of the surface gallium oxide (Ga2O3), this work introduces a novel technique to synthesize gallium oxide nanoflakes at high yield by harvesting the self-limiting native surface oxide of gallium. The synthesis process follows a facile two-step method comprising liquid gallium metal sonication in DI water and subsequent annealing. In order to explore the functionalities of the product, the obtained hexagonal alpha-Ga2O3 nanoflakes are used as a photocatalytic material to decompose organic model dyes. Excellent photocatalytic activity is observed under solar light irradiation. To elucidate the origin of these enhanced catalytic properties, the electronic band structure of the synthesized alpha-Ga2O3 is carefully assessed. Consequently, this excellent photocatalytic performance is associated with an energy bandgap reduction, due to the presence of trap states, which are located at approximate to 1.65 eV under the conduction band minimum. This work presents a novel route for synthesizing oxide nanostructures that can be extended to other low melting temperature metals and their alloys, with great prospects for scaling up and high yield synthesis.
机译:镓是一种接近室温的液态金属,具有非凡的性能,其部分原因是在其表面上形成的自限氧化层。利用表面氧化镓(Ga2O3)的优势,这项工作引入了一种新技术,即通过收集镓的自限天然氧化物来以高收率合成氧化镓纳米薄片。合成过程遵循简便的两步法,包括在去离子水中进行液态镓金属超声处理,然后进行退火。为了探索产物的功能,将获得的六方α-Ga2O3纳米薄片用作光催化材料,以分解有机模型染料。在太阳光照射下观察到优异的光催化活性。为了阐明这些增强的催化性能的起源,仔细评估了合成的α-Ga2O3的电子能带结构。因此,由于存在陷阱态,该优异的光催化性能与能带隙降低相关,陷阱态位于导带最小值下约1.65 eV。这项工作提出了一种合成氧化物纳米结构的新方法,该方法可以扩展到其他低熔点金属及其合金,具有扩大规模和高产率合成的广阔前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号