首页> 外文期刊>Advanced Functional Materials >Plasmonic Charge Transfers in Large-Scale Metallic and Colloidal Photonic Crystal Slabs
【24h】

Plasmonic Charge Transfers in Large-Scale Metallic and Colloidal Photonic Crystal Slabs

机译:大规模金属和胶体光子晶体板中的等离子体电荷转移

获取原文
获取原文并翻译 | 示例
           

摘要

The challenges in plasmonic charge transfer on a large-scale and low losses are systematically investigated by optical designs using 1D-plasmonic lattice structures. These plasmonic lattices are used as couplers to guide the energy in an underneath sub-wavelength titanium dioxide layer, resulting in the photonic crystal slabs. So far, photodetection is possible at energy levels close to the semiconductor bandgap; however, with the observed hybrid plasmonic-photonic modes, other wavelengths over the broad solar spectrum can be easily accessed for energy harvesting. The photo-enhanced current is measured locally with simple two-point contact on the centimeter-squared nanostructure by applying a bias voltage. As lattice couplers, interference lithographically fabricated conventional gold grating provides an advantage in fabrication; this optical concept is extended for the first time toward colloidal self-assembled nanoparticle chains to make the charge injection accessible for large-scale at reasonable costs with possibilities of photodetection by electric field vectors both along and perpendicular to the grating lines. To discuss the bottleneck of unavoidable isolating ligand shell of nanoparticles in contrast to the directly contacted nanobars, polarization-dependent ultrafast characterizations are carried out to study the charge injection processes in femtosecond resolution.
机译:使用1D-等离子体晶格结构的光学设计系统地研究了大规模和低损失上的等离子体电荷转移的挑战。这些等离子体晶格用作耦合器,以引导在下部波长钛层下的能量,导致光子晶板。到目前为止,在靠近半导体带隙的能量水平时,可以进行光电检测;然而,通过观察到的混合等离子体 - 光子模式,可以容易地进入宽太阳光谱上的其他波长以进行能量收集。通过施加偏置电压,在厘米平方纳米结构上的简单两点接触本地测量光增强电流。作为格子耦合器,干扰标记制造的传统金光栅在制造中提供了优势;该光学概念首次延伸朝向胶体自组装纳米颗粒链,以使电荷注入以合理的成本以可接受的成本进行大规模,并且通过电场向量沿着和垂直于光栅线来进行光电检测。为了讨论与直接接触的纳米多巴底相反,纳米颗粒的不可避免的分离配体壳的瓶颈,进行极化依赖性超快表征,以研究飞秒分辨率的电荷注射过程。

著录项

  • 来源
    《Advanced Functional Materials》 |2021年第19期|2011099.1-2011099.14|共14页
  • 作者单位

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany|Indian Inst Technol Delhi Dept Phys New Delhi 110016 India;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany|Friedrich Alexander Univ Erlangen Nurnberg Inst Particle Technol Cauerstr 4 D-91058 Erlangen Germany;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany|Indian Inst Technol Delhi Dept Phys New Delhi 110016 India;

    Indian Inst Technol Delhi Dept Phys New Delhi 110016 India;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany;

    Indian Inst Technol Delhi Dept Phys New Delhi 110016 India;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany|Tech Univ Dresden Phys Chem Polymer Mat Bergstr 66 D-01069 Dresden Germany;

    Indian Inst Technol Delhi Dept Phys New Delhi 110016 India;

    Leibniz Inst Polymerforsch Dresden eV IPF Inst Phys Chem & Polymer Phys Hohe Str 6 D-01069 Dresden Germany|Tech Univ Dresden Ctr Adv Elect Dresden cfaed D-01062 Dresden Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    charge transfer; light trapping; photocurrent; plasmonic nanoparticles; self-assembly;

    机译:电荷转移;光捕获;光电流;等离子体纳米粒子;自组装;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号