首页> 外文期刊>Advanced Functional Materials >Modulating Electronic Structure of Monolayer Transition Metal Dichalcogenides by Substitutional Nb-Doping
【24h】

Modulating Electronic Structure of Monolayer Transition Metal Dichalcogenides by Substitutional Nb-Doping

机译:通过替代NB掺杂调节单层过渡金属二甲基甲基化物的电子结构

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Modulating electronic structure of monolayer transition metal dichalcogenides (TMDCs) is important for many applications, and doping is an effective way toward this goal, yet is challenging to control. Here, the in situ substitutional doping of niobium (Nb) into TMDCs with tunable concentrations during chemical vapor deposition is reported. Taking monolayer WS2 as an example, doping Nb into its lattice leads to bandgap changes in the range of 1.98-1.65 eV. Noteworthy, electrical transport measurements and density functional theory calculations show that the 4d electron orbitals of the Nb dopants contribute to the density of states of Nb-doped WS2 around the Fermi level, resulting in an n- to p-type conversion. Nb-doping also reduces the energy barrier of hydrogen absorption in WS2, leading to an improved electrocatalytic hydrogen evolution performance. These results highlight the effectiveness of controlled doping in modulating the electronic structure of TMDCs and their use in electronic related applications.
机译:调制单层过渡金属的电子结构二均甲基化物(TMDC)对于许多应用是重要的,并且掺杂是对该目标的有效方式,但却是挑战控制。这里,报道了在化学气相沉积中具有可调谐浓度的铌(Nb)的原位取代掺杂液中的TMDC。以单层WS2为例,将NB掺杂到其晶格中导致带隙变化为1.98-1.65eV。值得注意的是,电气传输测量和密度函数理论计算表明,Nb掺杂剂的4d电子轨道有助于围绕费米水平的Nb掺杂Ws2的状态的密度,从而导致n-至p型转化。 NB掺杂也降低了WS2中吸收氢吸收的能量屏障,导致改善的电催化氢进化性能。这些结果突出了控制掺杂在调制TMDC的电子结构时的有效性及其在电子相关应用中的应用。

著录项

  • 来源
    《Advanced Functional Materials》 |2021年第5期|2006941.1-2006941.7|共7页
  • 作者单位

    Tsinghua Univ Shenzhen Geim Graphene Ctr Tsinghua Berkeley Shenzhen Inst Shenzhen 518055 Peoples R China|Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen 518055 Peoples R China;

    Tsinghua Univ Shenzhen Geim Graphene Ctr Tsinghua Berkeley Shenzhen Inst Shenzhen 518055 Peoples R China|Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen 518055 Peoples R China;

    Tsinghua Univ Shenzhen Geim Graphene Ctr Tsinghua Berkeley Shenzhen Inst Shenzhen 518055 Peoples R China|Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen 518055 Peoples R China;

    Tsinghua Univ Shenzhen Geim Graphene Ctr Tsinghua Berkeley Shenzhen Inst Shenzhen 518055 Peoples R China|Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen 518055 Peoples R China;

    Tsinghua Univ Shenzhen Geim Graphene Ctr Tsinghua Berkeley Shenzhen Inst Shenzhen 518055 Peoples R China|Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen 518055 Peoples R China;

    Southern Univ Sci & Technol Dept Phys Shenzhen 518055 Peoples R China;

    Tsinghua Univ Shenzhen Geim Graphene Ctr Tsinghua Berkeley Shenzhen Inst Shenzhen 518055 Peoples R China|Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen 518055 Peoples R China;

    Southern Univ Sci & Technol Dept Phys Shenzhen 518055 Peoples R China;

    Southern Univ Sci & Technol Dept Phys Shenzhen 518055 Peoples R China;

    Tsinghua Univ Shenzhen Geim Graphene Ctr Tsinghua Berkeley Shenzhen Inst Shenzhen 518055 Peoples R China|Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen 518055 Peoples R China;

    Tsinghua Univ Shenzhen Geim Graphene Ctr Tsinghua Berkeley Shenzhen Inst Shenzhen 518055 Peoples R China|Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen 518055 Peoples R China;

    Tsinghua Univ Shenzhen Geim Graphene Ctr Tsinghua Berkeley Shenzhen Inst Shenzhen 518055 Peoples R China|Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen 518055 Peoples R China|Chinese Acad Sci Inst Met Res Shenyang Natl Lab Mat Sci Shenyang 110016 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    2D materials; bandgap; doping; electronic structure; TMDCs;

    机译:2D材料;带隙;掺杂;电子结构;TMDCS;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号