...
首页> 外文期刊>Advanced Functional Materials >Highly-Cyclable Room-Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries
【24h】

Highly-Cyclable Room-Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries

机译:LI金属电池的高度循环室温磷烯聚合物电解质复合材料

获取原文
获取原文并翻译 | 示例

摘要

Despite significant interest toward solid-state electrolytes owing to their superior safety in comparison to liquid-based electrolytes, sluggish ion diffusion and high interfacial resistance limit their application in durable and high-power density batteries. Here, a novel quasi-solid Li+ ion conductive nanocomposite polymer electrolyte containing black phosphorous (BP) nanosheets is reported. The developed electrolyte is successfully cycled against Li metal (over 550 h cycling) at 1 mA cm(-2) at room temperature. The cycling overpotential is dropped by 75% in comparison to BP-free polymer composite electrolyte indicating lower interfacial resistance at the electrode/electrolyte interfaces. Molecular dynamics simulations reveal that the coordination number of Li+ ions around (trifluoromethanesulfonyl)imide (TFSI-) pairs and ethylene-oxide chains decreases at the Li metal/electrolyte interface, which facilitates the Li+ transport through the polymer host. Density functional theory calculations confirm that the adsorption of the LiTFSI molecules at the BP surface leads to the weakening of N and Li atomic bonding and enhances the dissociation of Li+ ions. This work offers a new potential mechanism to tune the bulk and interfacial ionic conductivity of solid-state electrolytes that may lead to a new generation of lithium polymer batteries with high ionic conduction kinetics and stable long-life cycling.
机译:尽管与液态电解质相比,由于其卓越的安全性,但对于液态电解质而言,对于耐液体电解质的卓越安全性和高界面阻力,尽管与液态的电解质相比,它们在耐用高功率密度电池中的应用。这里,报道了一种新型的准固体Li +离子导电纳米复合材料聚合物电解质含有黑色磷(BP)纳米晶片。在室温下在1mA cm(-2)下成功地将开发的电解质成功地循环在1mA cm(-2)上。与具有在电极/电解质界面的无BP的聚合物复合电解质相比,循环过势率下降75%。分子动力学模拟表明,在Li金属/电解质界面处促进了Li +离子的配位数(三氟甲磺酰基)酰亚胺(TFSI-磺酰基)和乙烯氧化物链,其利用聚合物宿主促进Li +转运。密度函数理论计算证实,BP表面的LITFSI分子的吸附导致N和LI原子键的弱化,并增强Li +离子的解离。这项工作提供了一种新的潜在机制,可以调节固态电解质的体积和界面离子电导率,这可能导致具有高离子传导动力学和稳定的长寿命循环的新一代锂聚合物电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号