首页> 外文期刊>Advanced Functional Materials >High-Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels
【24h】

High-Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels

机译:用于研究局部几何形状和拓扑对发芽血管发展和定向的高吞吐量脚手架系统

获取原文
获取原文并翻译 | 示例
           

摘要

Live tissues require vascular networks for cell nourishing. Mimicking the complex structure of native vascular networks in vitro requires understanding the governing factors of early tubulogenesis. Current vascularization protocols allow for spontaneous formation of vascular networks; however, there is still a need to provide control over the defined network structure. Moreover, there is little understanding on sprouting decision and migration, especially within 3D environments. Here, tessellated polymer scaffolds with various compartment geometries and a novel two-step seeding protocol are used to study vessel sprouting decisions. Endothelial cells first organize into hollow vessels tracing the shape contour with high fidelity. Subsequent sprouts emerge in specific directions, responding to compartment geometry. Time-lapse imaging is used to track vessel migration, evidencing that sprouts frequently emerge from the side centers, mainly migrating toward opposing corners, where the density of support cells (SCs) is the highest, providing the highest levels of angiogenic factors. SCs distribution is quantified by smooth muscle actin expression, confirming the cells preference for curved compartment surfaces and corners. Displacements within the hydrogel correlate with SCs distribution during the initial tubulogenesis phase. This work provides new insight regarding vessel sprouting decisions that should be considered when designing scaffolds for vascularized engineered tissues.
机译:活组织需要血管网络进行细胞滋养。模仿体外天然血管网络的复杂结构需要了解早期小管发生的控制因素。目前的血管化方案允许自发地形成血管网络;但是,仍然需要提供对定义的网络结构的控制。此外,对萌芽决策和迁移几乎没有了解,特别是在3D环境中。这里,使用具有各种隔室几何形状和新型两步播种方案的镶嵌聚合物支架来研究血管发芽决定。内皮细胞首先组织成中空血管,追踪具有高保真性的形状轮廓。随后的豆芽在特定方向上出现,响应隔室几何形状。时间流逝成像用于跟踪船舶迁移,证明豆芽经常从侧面中心出现,主要迁移到相对的角落,其中支持细胞(SCs)的密度最高,提供最高水平的血管生成因子。 SCS分布通过平滑肌肌动蛋白表达量化,确认弯曲室表面和角落的细胞偏好。水凝胶内的位移与初始小管发生期间与SCS分布相关。这项工作为船舶发芽决策提供了新的洞察,这些决定应该在设计血管化工程组织的支架时考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号