...
首页> 外文期刊>Advanced Functional Materials >Function Follows Form: From Semiconducting to Metallic toward Superconducting PbS Nanowires by Faceting the Crystal
【24h】

Function Follows Form: From Semiconducting to Metallic toward Superconducting PbS Nanowires by Faceting the Crystal

机译:功能遵循形式:通过刻划晶体来从半导体到金属朝向超导PBS纳米线

获取原文
获取原文并翻译 | 示例
           

摘要

In the realm of colloidal nanostructures, with their immense capacity for shape and dimensionality control, the form is undoubtedly a driving factor for the tunability of optical and electrical properties in semiconducting or metallic materials. However, influencing the fundamental properties is still challenging and requires sophisticated surface or dimensionality manipulation. Such a modification is presented for the example of colloidal lead-sulfide nanowires. It is shown that the electrical properties of lead sulfide nanostructures can be altered from semiconducting to metallic with indications of superconductivity, by exploiting the flexibility of the colloidal synthesis to sculpt the crystal and to form different surface facets. A particular morphology of lead sulfide nanowires is prepared through the formation of {111} surface facets, which shows metallic and superconducting properties in contrast to other forms of this semiconducting crystal, which contain other surface facets ({100} and {110}). This effect, which is investigated with several experimental and theoretical approaches, is attributed to the presence of lead-rich {111} facets. The insights promote new strategies for tuning the properties of crystals and new applications for lead sulfide nanostructures.
机译:在胶体纳米结构的领域中,具有它们的形状和维度控制的巨大能力,该形式无疑是用于半导体或金属材料中光学和电学性能的可随机性的驱动因子。然而,影响基本属性仍然具有挑战性,需要复杂的表面或维度操纵。提出了用于胶体铅硫化物纳米线的实施例的这种修饰。结果表明,通过利用胶体合成的柔韧性并形成不同的表面刻面,可以从半导体与超导电性的指示改变铅硫化物纳米结构的电性能。通过形成{111}表面刻面制备铅硫化物纳米线的特定形态,其显示与该半导体晶体的其他形式的金属和超导特性,其包含其他表面刻面({100}和{110})。通过多种实验和理论方法调查的这种效果归因于存在富含铅的{111}小平面。洞察力促进了调整晶体和新应用的新策略和硫化铅纳米结构的新应用。

著录项

  • 来源
    《Advanced Functional Materials》 |2020年第19期|1910503.1-1910503.10|共10页
  • 作者单位

    Univ Hamburg Inst Phys Chem Martin Luther King Pl 6 D-20146 Hamburg Germany|Deutsch Elektronen Synchrotron DESY DESY Photon Sci Dept Notkestr 85 D-22607 Hamburg Germany;

    Univ Hamburg Inst Phys Chem Martin Luther King Pl 6 D-20146 Hamburg Germany;

    Univ Hamburg Inst Phys Chem Martin Luther King Pl 6 D-20146 Hamburg Germany;

    Univ Hamburg Inst Phys Chem Martin Luther King Pl 6 D-20146 Hamburg Germany;

    Deutsch Elektronen Synchrotron DESY DESY NanoLab D-22607 Hamburg Germany;

    Deutsch Elektronen Synchrotron DESY DESY NanoLab D-22607 Hamburg Germany;

    Univ Hamburg Inst Phys Chem Martin Luther King Pl 6 D-20146 Hamburg Germany;

    Univ Cadiz Fac Ciencias Campus Rio San Pedro Cadiz 11510 Spain;

    Univ Hamburg Inst Phys Chem Martin Luther King Pl 6 D-20146 Hamburg Germany|Univ Rostock Inst Phys Albert Einstein Str 23-24 D-18059 Rostock Germany|NAS Ukraine Pidstryhach Inst Appl Problems Mech & Math Naukowa Str 3b UA-79060 Lvov Ukraine|Lviv Polytech Natl Univ Dept Photon Bandery Str 12 UA-79000 Lvov Ukraine;

    Deutsch Elektronen Synchrotron DESY DESY NanoLab D-22607 Hamburg Germany|Univ Hamburg Phys Dept D-20355 Hamburg Germany;

    Univ Hamburg Inst Phys Chem Martin Luther King Pl 6 D-20146 Hamburg Germany|Univ Rostock Inst Phys Albert Einstein Str 23-24 D-18059 Rostock Germany|Swansea Univ Dept Chem Singleton Pk Swansea SA2 8PP W Glam Wales;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    colloidal nanocrystals; lead sulfide; ligands; nanowires; optoelectronic transport; superconductivity;

    机译:胶体纳米晶体;硫化铅;配体;纳米线;光电传输;超导性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号