首页> 外文期刊>Advanced Functional Materials >Constructing a High-Strength Solid Electrolyte Layer by In Vivo Alloying with Aluminum for an Ultrahigh-Rate Lithium Metal Anode
【24h】

Constructing a High-Strength Solid Electrolyte Layer by In Vivo Alloying with Aluminum for an Ultrahigh-Rate Lithium Metal Anode

机译:通过铝与铝的体内合金化构建超高强度锂金属阳极的高强度固体电解质层

获取原文
获取原文并翻译 | 示例
           

摘要

The serious safety issues caused by uncontrollable lithium (Li) dendrite growth, especially at high current densities, seriously hamper the rapid charging of Li metal-based batteries. Here, the construction of Al-Li alloy/LiCl-based Li anode (ALA/Li anode) is reported by displacement and alloying reaction between an AlCl3-ionic liquid and a Li foil. This layer not only has high ion-conductivity and good electron resistivity but also much improved mechanical strength (776 MPa) as well as good flexibility compared to a common solid electrolyte interphase layer (585 MPa). The high mechanical strength of the Al-Li alloy interlayer effectively eliminates volume expansion and dendrite growth in Li metal batteries, so that the ALA/Li anode achieves superior cycling for 1600 h (2.0 mA cm(-2)) and 1000 cycles at an ultrahigh current density (20 mA cm(-2)) without dendrite formation in symmetric batteries. In lithium-sulfur batteries, the dense alloy layer prevents direct contact between polysulfides and Li metal, inhibiting the shuttle effect and electrolyte decomposition. Long cycling performance is achieved even at a high current density (4 C) and a low electrolyte/sulfur (6.0 mu L mg(-1)). This easy fabrication process provides a strategy to realize reliable safety during the rapid charging of Li-metal batteries.
机译:由不可控制的锂(Li)枝晶生长引起的严重安全问题,尤其是在高电流密度下,严重阻碍了锂金属基电池的快速充电。在此,通过AlCl 3-离子液体和Li箔之间的置换和合金化反应来报告Al-Li合金/ LiCl基Li阳极(ALA / Li阳极)的构造。与普通的固体电解质相间层(585 MPa)相比,该层不仅具有高离子电导率和良好的电子电阻率,而且还大大提高了机械强度(776 MPa)和良好的柔韧性。 Al-Li合金中间层的高机械强度有效消除了Li金属电池中的体积膨胀和枝晶生长,因此ALA / Li阳极在1600 h(2.0 mA cm(-2))和1000循环下达到了出色的循环。超高电流密度(20 mA cm(-2)),在对称电池中不会形成枝晶。在锂硫电池中,致密的合金层可防止多硫化物与Li金属之间的直接接触,从而抑制穿梭效应和电解质分解。即使在高电流密度(4 C)和低电解质/硫(6.0μL mg(-1))的情况下,也可以实现长循环性能。这种简单的制造工艺提供了一种在锂金属电池快速充电期间实现可靠安全性的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号