...
首页> 外文期刊>Advanced Functional Materials >Sodium Storage and Electrode Dynamics of Tin-Carbon Composite Electrodes from Bulk Precursors for Sodium-Ion Batteries
【24h】

Sodium Storage and Electrode Dynamics of Tin-Carbon Composite Electrodes from Bulk Precursors for Sodium-Ion Batteries

机译:钠离子电池大体积前体的锡-碳复合电极的钠存储和电极动力学

获取原文
获取原文并翻译 | 示例

摘要

Here, a Sn-C composite material prepared from bulk precursors (tin metal, graphite, and melamine) using ball milling and annealing is reported. The composite (58 wt% Sn and 42 wt% N-doped carbon) shows a capacity up to 445 mAh g(Sn+C)(-1) and an excellent cycle life (1000 cycles). For the graphite, the ball milling leads to graphene nanoplatelets (GnP) for which the storage mechanism changes from solvent co-intercalation to conventional intercalation. The final composite (Sn at nitrogen-doped graphite nanoplatelets (SnNGnP)) is obtained by combining the GnPs with Sn and melamine as the nitrogen source. Rate-dependent measurements and in situ X-ray diffraction are used to study the asymmetric storage behavior of Sn, which shows a more sloping potential profile during sodiation and more defined steps during desodiation. The disappearance of two redox plateaus during desodiation is linked to the preceding sodiation current density (memory effect). The asymmetric behavior is also found by in situ electrochemical dilatometry. This method also shows that the effective electrode expansion during sodiation is much smaller (about +14%) compared to what is expected from Sn (+420%), which gives a reasonable explanation for the excellent cycle life for the SnNGnP (and likely other nanocomposites in general). Next to the advantages, challenges, which result from the nanocomposite approach, are also discussed.
机译:在此,报道了使用球磨和退火由块状前体(锡金属,石墨和三聚氰胺)制备的Sn-C复合材料。该复合材料(58 wt%的Sn和42 wt%的N掺杂的碳)显示出高达445 mAh g(Sn + C)(-1)的容量和出色的循环寿命(1000次循环)。对于石墨,球磨导致石墨烯纳米片(GnP),其存储机理从溶剂共嵌入变为常规嵌入。通过将GnPs与Sn和三聚氰胺作为氮源结合,可以得到最终的复合材料(氮掺杂石墨纳米片上的Sn(SnNGnP))。速率相关的测量和原位X射线衍射用于研究Sn的不对称存储行为,Sn在沉积过程中显示出更倾斜的势能曲线,在脱硫过程中显示出更明确的步骤。脱氧过程中两个氧化还原平台的消失与先前的氧化电流密度(记忆效应)有关。还通过原位电化学膨胀法发现不对称行为。该方法还表明,与Sn(+ 420%)相比,在电镀过程中有效的电极膨胀要小得多(约+ 14%),这可以合理解释SnNGnP(以及其他可能的产品)的出色循环寿命。纳米复合材料)。除了优点,还讨论了纳米复合材料方法带来的挑战。

著录项

  • 来源
    《Advanced Functional Materials 》 |2019年第18期| 1900790.1-1900790.12| 共12页
  • 作者单位

    Friedrich Schiller Univ Jena, Inst Tech Chem & Environm Chem, Philosophenweg 7a, D-07743 Jena, Germany|Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC Jena, Philosophenweg 7a, D-07743 Jena, Germany;

    Friedrich Schiller Univ Jena, Inst Tech Chem & Environm Chem, Philosophenweg 7a, D-07743 Jena, Germany|Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC Jena, Philosophenweg 7a, D-07743 Jena, Germany;

    Univ Munster, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany;

    Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China;

    Univ Munster, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany;

    Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China;

    Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China;

    Univ Munster, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany;

    Friedrich Schiller Univ Jena, Inst Tech Chem & Environm Chem, Philosophenweg 7a, D-07743 Jena, Germany|Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC Jena, Philosophenweg 7a, D-07743 Jena, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    anode; nitrogen-doped carbon; sodium-ion battery; tin composite; volume expansion;

    机译:阳极;氮掺杂碳;钠离子电池;锡复合材料;体积膨胀;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号