首页> 外文期刊>Advanced energy materials >The Effect of Hole Transport Material Pore Filling on Photovoltaic Performance in Solid-State Dye-Sensitized Solar Cells
【24h】

The Effect of Hole Transport Material Pore Filling on Photovoltaic Performance in Solid-State Dye-Sensitized Solar Cells

机译:空穴传输材料孔隙填充对固态染料敏化太阳能电池光伏性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A detailed investigation of the effect of hole transport material (HTM) pore filling on the photovoltaic performance of solid-state dye-sensitized solar cells (ss-DSCs) and the specific mechanisms involved is reported. It is demonstrated that the efficiency and photovoltaic characteristics of ss-DSCs improve with the pore filling fraction (PFF) of the HTM, 2,2’,7,7’-tetrakis-(N, N -di- p -methoxyphenylamine)9,9’-spirobifluorene(spiro-OMeTAD). The mechanisms through which the improvement of photovoltaic characteristics takes place were studied with transient absorption spectroscopy and transient photovoltage/photocurrent measurements. It is shown that as the spiro-OMeTAD PFF is increased from 26% to 65%, there is a higher hole injection efficiency from dye cations to spiro-OMeTAD because more dye molecules are covered with spiro-OMeTAD, an order-of-magnitude slower recombination rate because holes can diffuse further away from the dye/HTM interface, and a 50% higher ambipolar diffusion coefficient due to an improved percolation network. Device simulations predict that if 100% PFF could be achieved for thicker devices, the efficiency of ss-DSCs using a conventional ruthenium-dye would increase by 25% beyond its current value.
机译:报告了对空穴传输材料(HTM)孔填充对固态染料敏化太阳能电池(ss-DSC)的光伏性能的影响及其涉及的具体机制的详细研究。结果表明,ss-DSCs的效率和光电特性随HTM,2,2',7,7'-四-(N,N-二-对甲氧基苯胺)的孔填充率(PFF)而提高9 ,9'-螺双芴(spiro-OMeTAD)。利用瞬态吸收光谱法和瞬态光电压/光电流测量研究了改善光伏特性的机理。结果表明,随着spiro-OMeTAD PFF从26%增加到65%,从染料阳离子到spiro-OMeTAD的空穴注入效率更高,因为更多的染料分子被spiro-OMeTAD覆盖,数量级高。由于空穴可以从染料/ HTM界面进一步扩散,重组速度较慢,并且由于改善了渗滤网络,双极性扩散系数提高了50%。器件仿真预测,如果对于较厚的器件可以实现100%PFF,则使用常规钌染料的ss-DSC的效率将比其当前值提高25%。

著录项

  • 来源
    《Advanced energy materials》 |2011年第3期|1-8|共8页
  • 作者单位

    Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA;

    Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA;

    Institute of Chemical Sciences and Engineering École Polytechnique FÉdÉrale de Lausanne 1015 Lausanne Switzerland;

    Institute of Chemical Sciences and Engineering École Polytechnique FÉdÉrale de Lausanne 1015 Lausanne Switzerland;

    Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA;

    Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA;

    Institute of Chemical Sciences and Engineering École Polytechnique FÉdÉrale de Lausanne 1015 Lausanne Switzerland;

    Institute of Chemical Sciences and Engineering École Polytechnique FÉdÉrale de Lausanne 1015 Lausanne Switzerland;

    Institute of Chemical Sciences and Engineering École Polytechnique FÉdÉrale de Lausanne 1015 Lausanne Switzerland;

    Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    photovoltaic devices; solar cells; organic electronics; titanium dioxide; photochemistry;

    机译:光电器件;太阳能电池;有机电子;二氧化钛;光化学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号