首页> 外文期刊>Advanced energy materials >Polymer Blend Solar Cells Based on a High-Mobility Naphthalenediimide-Based Polymer Acceptor: Device Physics, Photophysics and Morphology
【24h】

Polymer Blend Solar Cells Based on a High-Mobility Naphthalenediimide-Based Polymer Acceptor: Device Physics, Photophysics and Morphology

机译:基于高移动性萘二甲酰亚胺基聚合物受体的聚合物共混太阳能电池:装置物理,光物理和形态学

获取原文
获取原文并翻译 | 示例
           

摘要

A high electron mobility polymer, poly{[N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5’-(2,2’-bithiophene) (P(NDI2OD-T2)) is investigated for use as an electron acceptor in all-polymer blends. Despite the high bulk electron mobility, near-infrared absorption band and compatible energy levels, bulk heterojunction devices fabricated with poly(3-hexylthiophene) (P3HT) as the electron donor exhibit power conversion efficiencies of only 0.2%. In order to understand this disappointing photovoltaic performance, systematic investigations of the photophysics, device physics and morphology of this system are performed. Ultra-fast transient absorption spectroscopy reveals a two-stage decay process with an initial rapid loss of photoinduced polarons, followed by a second slower decay. This second slower decay is similar to what is observed for efficient P3HT:PCBM ([6,6]-phenyl C61-butyric acid methyl ester) blends, however the initial fast decay that is absent in P3HT:PCBM blends suggests rapid, geminate recombination of charge pairs shortly after charge transfer. X-ray microscopy reveals coarse phase separation of P3HT:P(NDI2OD-T2) blends with domains of size 0.2 to 1 micrometer. P3HT photoluminescence, however, is still found to be efficiently quenched indicating intermixing within these mesoscale domains. This hierarchy of phase separation is consistent with the transient absorption, whereby localized confinement of charges on isolated chains in the matrix of the other polymer hinders the separation of interfacial electron-hole pairs. These results indicate that local, interfacial processes are the key factor determining the overall efficiency of this system and highlight the need for improved morphological control in order for the potential benefit of high-mobility electron accepting polymers to be realized.
机译:高电子迁移率聚合物,聚{[N,N'-双(2-辛基十二烷基)-萘-1,4,5,8-双(二​​甲叉酰亚胺)-2,6-二基] -alt-5,5'- (2,2'-联噻吩)(P(NDI2OD-T2))被研究用作全聚合物共混物中的电子受体。尽管具有高的体电子迁移率,近红外吸收带和兼容的能级,但以聚​​(3-己基噻吩)(P3HT)作为电子供体制造的体异质结器件的功率转换效率仅为0.2%。为了理解这种令人失望的光伏性能,对系统的光物理,器件物理和形态进行了系统研究。超快速瞬态吸收光谱揭示了一个两阶段的衰减过程,光子极化子的初始快速损失,然后是第二个较慢的衰减。第二个较慢的衰减类似于有效的P3HT:PCBM([6,6]-苯基C61-丁酸甲酯)混合物,但是P3HT:PCBM混合物中不存在最初的快速衰减,这表明它们迅速发生了重组。电荷转移后不久的一组电荷对。 X射线显微镜显示P3HT:P(NDI2OD-T2)共混物的粗相分离,其畴尺寸为0.2至1微米。然而,仍然发现P3HT光致发光被有效地淬灭,表明在这些中尺度域内混合。这种相分离的层次结构与瞬态吸收相一致,由此,电荷在其他聚合物基质中的孤立链上的局限性限制了界面电子-空穴对的分离。这些结果表明,局部界面过程是决定该系统整体效率的关键因素,并突出显示了需要改进形态控制以实现高迁移率电子接受聚合物的潜在益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号