首页> 外文期刊>Advanced energy materials >Molecular Design of Interfacial Modifiers for Polymer-Inorganic Hybrid Solar Cells
【24h】

Molecular Design of Interfacial Modifiers for Polymer-Inorganic Hybrid Solar Cells

机译:聚合物-无机混合太阳能电池界面改性剂的分子设计

获取原文
获取原文并翻译 | 示例
           

摘要

The heterojunction of poly(3-hexylthiophene) (P3HT) and TiO2 in hybrid solar cells is systematically engineered with four cyanoacrylic acid-containing conjugated molecules with various lowest unoccupied molecular orbital (LUMO) levels, WL-1 to WL-4, which are prepared by the formylation of thiophene derivatives in a Vilsmeier–Haack reaction, followed by treatment with cyanoacetic acid. The optical characteristics, redox properties, and intrinsic dipole moments of these interfacial modifiers (IMs) are examined using UV-vis spectrophotometry, cyclic voltammetry, and density functional theory calculations. Using cyanoacrylic acid as a terminal anchoring group in IMs increases the electron affinity in regions close to the titania surface and forms a molecular dipole that is orientated away from the TiO2 surface, enabling both open-circuit voltage (VOC) and short-circuit current density to be increased simultaneously. Photovoltaic measurements demonstrate that VOC increases with the dipole moment of IMs along the molecular backbone. Moreover, the external quantum efficiency (EQE) spectra display a bimodal distribution, revealing that both IMs and P3HT contribute to the photocurrent. The EQE at 570 nm is identified as characteristic of P3HT. More importantly, the LUMO of the IMs decisively determines the dissociation efficiency of P3HT excitons. The device based on P3HT/WL-4/TiO2 exhibits the highest power conversion efficiency of 2.87%.
机译:聚(3-己基噻吩)(P3HT)和TiO2在混合太阳能电池中的异质结是系统地设计的,具有四个具有各种最低未占据分子轨道(LUMO)水平的含氰基丙烯酸的共轭分子,WL-1至WL-4,分别是通过在Vilsmeier-Haack反应中对噻吩衍生物进行甲酰化制备,然后用氰基乙酸处理。使用紫外可见分光光度法,循环伏安法和密度泛函理论计算来检查这些界面改性剂(IM)的光学特性,氧化还原特性和固有偶极矩。在IM中使用氰基丙烯酸作为末端锚定基团可增加靠近二氧化钛表面的区域的电子亲和力,并形成一个远离TiO2表面取向的分子偶极子,从而实现开路电压(VOC)和短路电流密度同时增加。光伏测量表明,VOC随着IM沿着分子主链的偶极矩而增加。此外,外部量子效率(EQE)光谱显示双峰分布,表明IM和P3HT均对光电流有贡献。 570 nm处的EQE被确定为P3HT的特征。更重要的是,IM的LUMO决定性地决定了P3HT激子的离解效率。基于P3HT / WL-4 / TiO2的器件具有最高的功率转换效率,为2.87%。

著录项

  • 来源
    《Advanced energy materials》 |2012年第2期|1-8|共8页
  • 作者单位

    Institute of Polymer Science and Engineering National Taiwan University Taipei 106 Taiwan;

    Institute of Polymer Science and Engineering National Taiwan University Taipei 106 Taiwan;

    Institute of Polymer Science and Engineering National Taiwan University Taipei 106 Taiwan;

    Institute of Polymer Science and Engineering National Taiwan University Taipei 106 Taiwan;

    Institute of Polymer Science and Engineering National Taiwan University Taipei 106 Taiwan;

    Institute of Polymer Science and Engineering National Taiwan University Taipei 106 Taiwan;

    Institute of Organic and Polymeric Materials National Taipei University of Technology Taipei 106 Taiwan;

    Institute of Polymer Science and Engineering National Taiwan University Taipei 106 Taiwan;

    Institute of Polymer Science and Engineering National Taiwan University Taipei 106 Taiwan;

    Center for Condensed Matter Sciences and Center for Emerging Material and Advanced Devices National Taiwan University Taipei 106 Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    charge transport; conjugated polymers; hybrid materials; solar cells; surface modification;

    机译:电荷传输;共轭聚合物;混合材料;太阳能电池;表面改性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号