...
首页> 外文期刊>Advanced energy materials >Photodegradation in Encapsulated Silole-Based Polymer: PCBM Solar Cells Investigated using Transient Absorption Spectroscopy and Charge Extraction Measurements
【24h】

Photodegradation in Encapsulated Silole-Based Polymer: PCBM Solar Cells Investigated using Transient Absorption Spectroscopy and Charge Extraction Measurements

机译:封装的基于硅烷的聚合物中的光降解:使用瞬态吸收光谱法和电荷提取测量技术研究PCBM太阳能电池

获取原文
获取原文并翻译 | 示例

摘要

Light induced degradation has been observed in the performance of organic solar cells in the absence of oxygen and a detailed analysis of the effect of this photodegradation on optical and electrical features has been accomplished. This photodegradation study has been performed on encapsulated photovoltaic blend devices comprised of the silole-based donor–acceptor polymer KP115 blended with [6,6]-phenyl C61-butyric acid methyl ester (PCBM). Photodegradation induces an almost 20% decrease in power conversion efficiency, primarily as a result of a reduction in short circuit current, JSC. The initial burn-in phase of the photodegradation has been examined using a combination of transient absorption spectroscopy and charge extraction measurements, including photo-CELIV (charge extraction by linearly increasing voltage) and time-resolved charge extraction using a nanosecond switch. These measurements reveal a bimodal KP115 polaron population, comprised of both delocalised and localised/trapped charge carriers. The photodegradation results are consistent with an alteration of this bimodal KP115 polaron population, with the polarons becoming trapped in a broader, deeper density of localised states. Under laser illumination and at open circuit conditions, this enhanced trapping after light soaking inhibits charges from undergoing bimolecular recombination, leading to higher extracted charge densities at long times. At the lower charge densities operating at short circuit conditions and under continuous white light illumination, where bimolecular recombination is much less significant, the JSC decreases after light soaking due to a reduction in the efficiency of trapped charge carrier extraction.
机译:在没有氧气的情况下,在有机太阳能电池的性能中观察到光诱导的降解,并且已经完成了对该光降解对光学和电学特征的影响的详细分析。这项光降解研究是在封装的光伏共混器件上进行的,该器件由基于甲硅烷基的供体-受体聚合物KP115与[6,6]-苯基C61-丁酸甲酯(PCBM)混合而成。光降解主要是由于短路电流JSC降低而导致功率转换效率降低了近20%。已使用瞬态吸收光谱法和电荷提取测量(包括光CELIV(通过线性增加电压进行电荷提取)和使用纳秒级开关的时间分辨电荷提取)的组合检查了光降解的初始老化阶段。这些测量结果显示了一个双峰KP115极化子种群,既包含离域电荷,又包含局部/捕获的电荷载流子。光降解的结果与这种双峰KP115极化子种群的变化是一致的,极化子被困在更宽,更深的局部态密度中。在激光照明和开路条件下,光浸泡后这种增强的俘获抑制了电荷进行双分子重组,从而导致长时间更高的提取电荷密度。在短路条件下和连续白光照明下工作的较低电荷密度下,双分子重组的影响不那么明显,在光浸泡之后,由于捕获的电荷载流子提取效率降低,JSC降低。

著录项

  • 来源
    《Advanced energy materials 》 |2013年第11期| 1-11| 共11页
  • 作者单位

    ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute University of Wollongong North Wollongong NSW 2500 Australia;

    Konarka Technologies 116 John St. Suite 12 Lowell Massachusetts 01852 USA;

    Konarka Technologies 116 John St. Suite 12 Lowell Massachusetts 01852 USA;

    Konarka Technologies 116 John St. Suite 12 Lowell Massachusetts 01852 USA;

    National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan and Graduate School of Pure and Applied Sciences University of Tsukuba Tsukuba Ibaraki 305-8571 Japan;

    National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan and Graduate School of Pure and Applied Sciences University of Tsukuba Tsukuba Ibaraki 305-8571 Japan;

    ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute University of Wollongong North Wollongong NSW 2500 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    charge transport; conducting polymer; organic solar cell; photodegradation; transient absorption spectroscopy;

    机译:电荷传输;导电聚合物;有机太阳能电池;光降解;瞬态吸收光谱;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号