首页> 外文期刊>Advanced energy materials >The Importance of Fullerene Percolation in the Mixed Regions of Polymer-Fullerene Bulk Heterojunction Solar Cells
【24h】

The Importance of Fullerene Percolation in the Mixed Regions of Polymer-Fullerene Bulk Heterojunction Solar Cells

机译:富勒烯渗流在聚合物-富勒烯本体异质结太阳能电池混合区的重要性

获取原文
获取原文并翻译 | 示例
           

摘要

Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than ~80% of incident photons with energies above the polymer's band gap. If the thickness of these devices could be increased without sacrificing internal quantum efficiency, the device power conversion efficiency (PCE) could be significantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2-ethylhexyloxy)benzo[1,2-b∶4,5-b']dithiophene-co-octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) and [6,6]-phenyl-C_(61) -butyric acid methyl ester (PCBM) with 7.3% PCE and find that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum efficiency. These findings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHjs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum efficiency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells.
机译:最优化的施主-受主(D-A)聚合物本体异质结(BHJ)太阳能电池的活性层太薄,以至于不能吸收大于约80%的入射光子,其能量高于聚合物的带隙。如果可以在不牺牲内部量子效率的情况下增加这些器件的厚度,则可以显着提高器件功率转换效率(PCE)。我们研究了基于聚(二(2-乙基己氧基)苯并[1,2-b∶4,5-b']二噻吩-co-辛基噻吩并[3,4-c]吡咯-4的BHJ太阳能电池的器件特性,具有7.3%PCE的6-二酮)(PBDTTPD)和[6,6]-苯基-C_(61)-丁酸甲酯(PCBM),发现双分子重组限制了这些器件的活性层厚度。热退火不能减轻这些双分子的重组损失,并且可以大大降低PBDTTPD BHJ太阳能电池的PCE。我们表征了这些BHJ的热退火前后的形态,并确定热退火会大大降低混合区域中PCBM的浓度,该混合区域由分散在PBDTTPD非晶态部分中的PCBM组成。降低PCBM的浓度可能会减少这些混合区域中渗透电子传输路径的数量,并形成形态电子陷阱,从而增强电荷-载流子复合并限制器件量子效率。这些发现表明:(i)聚合物BHjs混合区域中PCBM的浓度必须高于PCBM渗滤阈值,以获得高的太阳能电池内部量子效率;以及(ii)新颖的加工技术,可改善聚合物空穴迁移率,同时为了限制光学厚器件中的双分子复合损失,并使聚合物BHJ太阳能电池的PCE最大化,应开发出在混合区域内保持PCBM渗滤的方法。

著录项

  • 来源
    《Advanced energy materials》 |2013年第3期|364-374|共11页
  • 作者单位

    Department of Materials Science and Engineering Stanford University Stanford, CA 94305, USA;

    Department of Materials Science and Engineering Stanford University Stanford, CA 94305, USA;

    Department of Applied Physics Stanford University Stanford, CA 94305, USA;

    Department of Materials Science and Engineering Stanford University Stanford, CA 94305, USA;

    Department of Chemistry, University of California Berkeley, CA 94720, USA;

    Department of Physics North Carolina State University Raleigh, NC 27695, USA;

    Department of Physics North Carolina State University Raleigh, NC 27695, USA;

    Department of Materials Science and Engineering Stanford University Stanford, CA 94305, USA;

    Division of Physical Sciences and Engineering King Abdullah University of Science and Technology Thuwal, 23955-6900, Saudi Arabia;

    Department of Physics North Carolina State University Raleigh, NC 27695, USA;

    Department of Chemistry, University of California Berkeley, CA 94720, USA,Division of Physical Sciences and Engineering King Abdullah University of Science and Technology Thuwal, 23955-6900, Saudi Arabia;

    Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park, CA 94025, USA;

    Department of Materials Science and Engineering Stanford University Stanford, CA 94305, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号