首页> 外文期刊>Advanced energy materials >Zn_4Sb_3 Nanotubes as Lithium Ion Battery Anodes with High Capacity and Cycling Stability
【24h】

Zn_4Sb_3 Nanotubes as Lithium Ion Battery Anodes with High Capacity and Cycling Stability

机译:具有高容量和循环稳定性的Zn_4Sb_3纳米管作为锂离子电池阳极

获取原文
获取原文并翻译 | 示例
           

摘要

Rational design and synthesis of nanostructured materials have been attracting significant research interest in developing new rechargeable lithium ion batteries (LIBs) with higher energy capacity and longer cycle life.An ideal electrode candidate should allow for high lithium storage capability, fast Li~+ diffusion rate, good structure flexibility, simple production procedure and reliable safety.It has been proposed that electrodes with nanoscale, hollow structures, and efficient transport pathways for ions and electrons can serve as promising candidates for enhanced battery capacity and life.Among many Li-storage compounds, Sb-based intermetallic compounds, such as Co-Sb, Mn-Sb, and Zn-Sb,are attractive anode materials, due to their high theoretical capacities and suitable operating voltages. For instance, orthorhombic ZnSb with a puckered layer structure provides stacked hexagonal channels for lithium insertion,and hexagonal Zn_4Sb_3 has relatively low density and more space for lithium insertion compared to pure Zn and Sb.These zinc antimonide compounds are typically synthesized via heat treatment or high-energy mechanical milling techniques,which can rapidly transform the micron-sized Zn and Sb powder into sub-10 nm particles. However, the charge transport across nanoparticles towards current collectors is mainly by hopping, limiting the electrode capacity. In addition, the volume change of those Sb-based intermetallic compounds during the Li~+ insertion/extraction often results in severe electrode pulverization and thus dramatic capacity loss.
机译:纳米结构材料的合理设计与合成在开发具有更高能量容量和更长循环寿命的新型可充电锂离子电池(LIB)方面引起了广泛的研究兴趣。理想的电极候选材料应具有较高的锂存储能力,快速的Li〜+扩散速率具有良好的结构灵活性,简单的生产程序和可靠的安全性。有人提出,具有纳米级,中空结构以及有效的离子和电子传输途径的电极可以作为提高电池容量和寿命的有前途的候选者。由于Sb基金属间化合物的高理论容量和合适的工作电压,它们是有吸引力的负极材料,例如Co-Sb,Mn-Sb和Zn-Sb。例如,具有褶皱层结构的斜方ZnSb提供了堆叠的六角形通道用于锂插入,而六角形Zn_4Sb_3与纯Zn和Sb相比具有相对较低的密度和更大的锂插入空间。这些锑化锌锌通常是通过热处理或高价合成的能量机械研磨技术,可将微米级的Zn和Sb粉末快速转变为10 nm以下的颗粒。但是,跨纳米颗粒向集电器的电荷传输主要是通过跳跃,从而限制了电极容量。另外,在Li +的插入/萃取过程中,那些基于Sb的金属间化合物的体积变化通常会导致严重的电极粉碎,从而导致容量急剧下降。

著录项

  • 来源
    《Advanced energy materials》 |2013年第3期|286-289|共4页
  • 作者单位

    Laboratory of Advanced Materials Department of Chemistry Fudan University Shanghai 200433, China;

    Laboratory of Advanced Materials Department of Chemistry Fudan University Shanghai 200433, China;

    Laboratory of Advanced Materials Department of Chemistry Fudan University Shanghai 200433, China;

    Laboratory of Advanced Materials Department of Chemistry Fudan University Shanghai 200433, China;

    Laboratory of Advanced Materials Department of Chemistry Fudan University Shanghai 200433, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号