...
首页> 外文期刊>Advanced energy materials >Very High Surface Capacity Observed Using Si Negative Electrodes Embedded in Copper Foam as 3D Current Collectors
【24h】

Very High Surface Capacity Observed Using Si Negative Electrodes Embedded in Copper Foam as 3D Current Collectors

机译:使用嵌在铜泡沫中的硅负极作为3D集电器可观察到非常高的表面容量

获取原文
获取原文并翻译 | 示例

摘要

Cu foam is evaluated as a replacement for metal foil current collectors to create 3D composite electrodes with the objective to produce Si-based anodes with high loadings. The electrodes are prepared by casting the slurry into the porosity of the foam. With such a design, the loading and the surface capacity can reach values as high as 10 mg cm−2 and 10 mAh cm−2. Compared to the common 2D design, the 3D copper framework shows a great advantage in the cycle life (more than 400 cycles at a Si loading of 10 mg cm−2 with commercial micrometric particles) and power performance. The thinness of the composite coating on the foam walls favors a better preservation of the electronic wiring upon cycling and fast lithium ion diffusion. A higher coulombic efficiency in half cells with lithium metal as the counter electrode is achieved by using carbon nanofibers (CNF) rather than carbon black (CB). The possibility to reach, in practice, higher surface capacity could allow a significant increase in both the volumetric and gravimetric energy densities by 23% and 19%, respectively, for the Cu foam-silicon//LiFePO4 stack compared to the graphite/LiFePO4 stack of traditional design.
机译:评估了Cu泡沫可以替代金属箔集电器以创建3D复合电极,目的是生产高负载的基于Si的阳极。通过将浆料浇铸到泡沫的孔隙中来制备电极。通过这种设计,负载和表面容量可以达到高达10 mg cm-2和10 mAh cm-2的值。与普通的2D设计相比,3D铜框架在循环寿命(具有商业微米级颗粒的10 mg cm-2的硅负载下,具有400多个循环)方面显示出巨大优势。泡沫壁上复合涂层的薄度有助于在循环和快速锂离子扩散时更好地保存电子线路。通过使用碳纳米纤维(CNF)而不是炭黑(CB),以锂金属为对电极的半电池具有更高的库仑效率。实际上,与石墨/ LiFePO4堆相比,Cu泡沫硅// LiFePO4堆可以实现更高的表面容量,从而使体积和重量能量密度分别显着增加23%和19%。传统设计。

著录项

  • 来源
    《Advanced energy materials 》 |2014年第8期| 1-13| 共13页
  • 作者单位

    Institut des MatÉriaux Jean Rouxel (IMN) CNRS UMR 6502 UniversitÉ de Nantes 2 rue de la HoussiniÈre-BP 32229 France;

    RÉseau sur le Stockage Electrochimique de l'Energie (RS2E) France;

    INRS-Centre Énergie MatÉriaux et TÉlÉcommunications Varennes (Qc) Canada;

    Institut des MatÉriaux Jean Rouxel (IMN) CNRS UMR 6502 UniversitÉ de Nantes 2 rue de la HoussiniÈre-BP 32229 France;

    RÉseau sur le Stockage Electrochimique de l'Energie (RS2E) France;

    Institut des MatÉriaux Jean Rouxel (IMN) CNRS UMR 6502 UniversitÉ de Nantes 2 rue de la HoussiniÈre-BP 32229 France;

    RÉseau sur le Stockage Electrochimique de l'Energie (RS2E) France;

    Institut des MatÉriaux Jean Rouxel (IMN) CNRS UMR 6502 UniversitÉ de Nantes 2 rue de la HoussiniÈre-BP 32229 France;

    RÉseau sur le Stockage Electrochimique de l'Energie (RS2E) France;

    INRS-Centre Énergie MatÉriaux et TÉlÉcommunications Varennes (Qc) Canada;

    Institut des MatÉriaux Jean Rouxel (IMN) CNRS UMR 6502 UniversitÉ de Nantes 2 rue de la HoussiniÈre-BP 32229 France;

    RÉseau sur le Stockage Electrochimique de l'Energie (RS2E) France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    lithium batteries; silicon; composite electrodes; 3D architectures;

    机译:锂电池;硅;复合电极;3D架构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号