...
首页> 外文期刊>Advanced energy materials >Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells
【24h】

Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells

机译:超越效率:介观钙钛矿型太阳能电池稳定性的挑战

获取原文
获取原文并翻译 | 示例

摘要

Over the past five years, the rapid emergence of a new class of solar cell based on mixed organic–inorganic halide perovskite semiconductors has captured the attention of scientists and researchers in the field of energy conversion. Benefiting from the optimization of perovskite film deposition approaches, the design of new material systems, and the diversity of device concepts, the efficiency of perovskite solar cells (PSCs) has increased from 2.19% in 2006 to a certified 20.1% in 2014, making this the fastest-advancing solar cell technology to date. However, as a photovoltaic technology, which needs to meet the requirements of working under long-term sunlight, PSCs suffer stability concerns for both materials and devices. Evolved from dye-sensitized solar cells (DSSCs), PSCs usually contain a mesoporous electron transporting layer or scaffold layer, a perovskite active layer, a hole transporting layer and a back contact to construct a mesoscopic-structured device. Using interface engineering, mesoscopic PSCs (MPSCs) have obtained exciting stability with a hole-conductor-free printable triple-layer architecture or conventional heterojunction version. Herein, the achievements of mesoscopic solar cells from solid-state DSSCs to MPSCs are outlined and summary of recent progress in the stability of MPSCs is presented. Possible degradation mechanism and solutions are presented and, finally, challenges for the commercialization of this photovoltaic technology are discussed.
机译:在过去的五年中,基于混合有机-无机卤化物钙钛矿半导体的新型太阳能电池的迅速出现引起了能量转换领域科学家和研究人员的关注。得益于钙钛矿薄膜沉积方法的优化,新材料系统的设计以及器件概念的多样性,钙钛矿太阳能电池(PSC)的效率从2006年的2.19%提高到2014年的认证20.1%,这使得迄今为止最快的太阳能电池技术。但是,作为一种光伏技术,需要满足在长期日光下工作的要求,PSC在材料和设备方面都面临稳定性问题。从染料敏化太阳能电池(DSSC)演变而来,PSC通常包含介孔电子传输层或支架层,钙钛矿活性层,空穴传输层和背面接触以构造介观结构的器件。使用界面工程技术,介观PSC(MPSC)借助无孔导体的可印刷三层体系结构或常规异质结版本获得了令人兴奋的稳定性。本文概述了介电太阳能电池从固态DSSC到MPSC的成就,并概述了MPSC稳定性的最新进展。提出了可能的降解机理和解决方案,最后讨论了该光伏技术的商业化挑战。

著录项

  • 来源
    《Advanced energy materials 》 |2015年第20期| 1-16| 共16页
  • 作者单位

    Michael Grtzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan China;

    Michael Grtzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan China;

    Michael Grtzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan China;

    Michael Grtzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan China;

    Michael Grtzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    stability; perovskite solar cells; mesoscopic structure; carbon counter electrodes; fully printable materials;

    机译:稳定性;钙钛矿太阳能电池;介观结构;碳反电极;可完全印刷的材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号