...
首页> 外文期刊>Advanced energy materials >Elucidating the Irreversible Mechanism and Voltage Hysteresis in Conversion Reaction for High-Energy Sodium-Metal Sulfide Batteries
【24h】

Elucidating the Irreversible Mechanism and Voltage Hysteresis in Conversion Reaction for High-Energy Sodium-Metal Sulfide Batteries

机译:阐明高能钠金属硫化物电池转换反应中的不可逆机理和电压滞后

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Irreversible electrochemical behavior and large voltage hysteresis are commonly observed in battery materials, in particular for materials reacting through conversion reaction, resulting in undesirable round-trip energy loss and low coulombic efficiency. Seeking solutions to these challenges relies on the understanding of the underlying mechanism and physical origins. Here, this study combines in operando 2D transmission X-ray microscopy with X-ray absorption near edge structure, 3D tomography, and galvanostatic intermittent titration techniques to uncover the conversion reaction in sodium-metal sulfide batteries, a promising high-energy battery system. This study shows a high irreversible electrochemistry process predominately occurs at first cycle, which can be largely linked to Na ion trapping during the first desodiation process and large interfacial ion mobility resistance. Subsequently, phase transformation evolution and electrochemical reaction show good reversibility at multiple discharge/charge cycles due to materials' microstructural change and equilibrium. The origin of large hysteresis between discharge and charge is investigated and it can be attributed to multiple factors including ion mobility resistance at the two-phase interface, intrinsic slow sodium ion diffusion kinetics, and irreversibility as well as ohmic voltage drop and overpotential. This study expects that such understandings will help pave the way for engineering design and optimization of materials microstructure for future-generation batteries.
机译:通常在电池材料中观察到不可逆的电化学行为和大的电压滞后,特别是对于通过转化反应进行反应的材料,导致不希望的往返能量损失和库仑效率低。寻求解决这些挑战的方法取决于对基本机制和物理来源的理解。在这里,这项研究将操作性2D透射X射线显微镜与近边缘结构的X射线吸收,3D断层扫描和恒电流间歇滴定技术相结合,以发现钠-金属硫化物电池的转化反应,这是一种很有前途的高能电池系统。这项研究表明,高度不可逆的电化学过程主要发生在第一个循环中,这在很大程度上可能与第一个脱氮过程中的Na离子捕集和较大的界面离子迁移阻力有关。随后,由于材料的微观结构变化和平衡,相变演化和电化学反应在多个放电/充电循环中显示出良好的可逆性。研究了放电和充电之间的大滞后现象的起因,这可以归因于多种因素,包括两相界面处的离子迁移阻力,固有的缓慢钠离子扩散动力学,不可逆性以及欧姆压降和过电势。这项研究期望这种理解将有助于为下一代电池的工程设计和材料微观结构优化铺平道路。

著录项

  • 来源
    《Advanced energy materials》 |2017年第14期|1602706.1-1602706.8|共8页
  • 作者单位

    Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Bldg 743 Ring Rd, Upton, NY 11973 USA;

    Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Bldg 743 Ring Rd, Upton, NY 11973 USA;

    Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Bldg 743 Ring Rd, Upton, NY 11973 USA;

    Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Bldg 743 Ring Rd, Upton, NY 11973 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号