...
首页> 外文期刊>Advanced energy materials >Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium-Oxygen Batteries
【24h】

Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium-Oxygen Batteries

机译:钙钛矿氧化物作为非水锂氧电池电极材料的最新进展

获取原文
获取原文并翻译 | 示例

摘要

Lithium-oxygen batteries are considered the next-generation power sources for many applications. The commercialization of this technology, however, is hindered by a variety of technical hurdles, including low obtainable capacity, poor energy efficiency, and limited cycle life of the electrodes, especially the cathode (or oxygen) electrode. During the last decade, tremendous efforts have been devoted to the development of new cathode materials. Among them, perovskite oxides have attracted much attention due to the extraordinary tunability of their compositions, structures, and functionalities (e.g., high electrical conductivities and catalytic activities), demonstrating the potential to achieve superior battery performance. This article focuses on the recent advances of perovskite oxides as the electrode materials in nonaqueous lithium-oxygen batteries. The electrochemical mechanisms of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the surface of perovskite oxides are first summarized. Then, the effect of nanostructure and morphology on ORR and OER activities is reviewed, from nanoparticles to hierarchical porous structures. Moreover, perovskite-oxide-based composite electrodes are discussed, highlighting the enhancement in electrical conductivities, catalytic activities, and durability under realistic operating conditions. Finally, the remaining challenges and new directions for achieving rational design of perovskite oxides for nonaqueous lithium-oxygen batteries are outlined and discussed.
机译:锂氧电池被认为是许多应用的下一代电源。然而,该技术的商业化受到多种技术障碍的阻碍,包括低可获得的容量,差的能量效率以及电极,特别是阴极(或氧)电极的有限的循环寿命。在过去的十年中,为开发新型阴极材料付出了巨大的努力。其中,钙钛矿氧化物由于其组成,结构和功能的非凡可调性(例如,高电导率和催化活性)而备受关注,证明了实现优异电池性能的潜力。本文重点介绍钙钛矿氧化物在非水锂氧电池中作为电极材料的最新进展。首先概述了钙钛矿氧化物表面的氧还原反应(ORR)和氧释放反应(OER)的电化学机理。然后,回顾了纳米结构和形态对ORR和OER活性的影响,从纳米颗粒到分层多孔结构。此外,讨论了基于钙钛矿氧化物的复合电极,强调了在实际操作条件下电导率,催化活性和耐久性的增强。最后,概述和讨论了实现合理设计用于非水锂氧电池的钙钛矿氧化物的剩余挑战和新方向。

著录项

  • 来源
    《Advanced energy materials 》 |2017年第13期| 1602674.1-1602674.23| 共23页
  • 作者单位

    Hong Kong Polytech Univ, Dept Bldg & Real Estate, Kowloon 999077, Hong Kong, Peoples R China;

    Georgia Inst Technol, Ctr Innovat Fuel Cell & Battery Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA;

    Nanjing Tech Univ, Coll Energy, State Key Lab Mat Oriented Chem Engn, Jiangsu Natl Synerget Innovat Ctr Adv Mat, Nanjing 210009, Jiangsu, Peoples R China|Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia;

    Hong Kong Polytech Univ, Dept Bldg & Real Estate, Kowloon 999077, Hong Kong, Peoples R China|Hong Kong Polytech Univ, RISUD, Environm Energy Res Grp, Kowloon 999077, Hong Kong, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号