首页> 外文期刊>Advanced energy materials >Fabrication of N-doped Graphene-Carbon Nanotube Hybrids from Prussian Blue for Lithium-Sulfur Batteries
【24h】

Fabrication of N-doped Graphene-Carbon Nanotube Hybrids from Prussian Blue for Lithium-Sulfur Batteries

机译:普鲁士蓝用于锂硫电池的N掺杂石墨烯-碳纳米管杂化物的制备

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Hybrid nanostructures containing 1D carbon nanotubes and 2D graphene sheets have many promising applications due to their unique physical and chemical properties. In this study, the authors find Prussian blue (dehydrated sodium ferrocyanide) can be converted to N-doped graphene-carbon nanotube hybrid materials through a simple one-step pyrolysis process. Through field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra, atomic force microscopy, and isothermal analyses, the authors identify that 2D graphene and 1D carbon nanotubes are bonded seamlessly during the growth stage. When used as the sulfur scaffold for lithium-sulfur batteries, it demonstrates outstanding electrochemical performance, including a high reversible capacity (1221 mA h g(-1) at 0.2 C rate), excellent rate capability (458 and 220 mA h g(-1) at 5 and 10 C rates, respectively), and excellent cycling stability (321 and 164 mA h g(-1) at 5 and 10 C (1 C = 1673 mA g(-1)) after 1000 cycles). The enhancement of electrochemical performance can be attributed to the 3D architecture of the hybrid material, in which, additionally, the nitrogen doping generates defects and active sites for improved interfacial adsorption. Furthermore, the nitrogen doping enables the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much-improved cycling performance. Therefore, the hybrid material functions as a redox shuttle to catenate and bind polysulfides, and convert them to insoluble lithium sulfide during reduction. The strategy reported in this paper could open a new avenue for low cost synthesis of N-doped graphene-carbon nanotube hybrid materials for high performance lithium-sulfur batteries.
机译:包含一维碳纳米管和二维石墨烯片的混合纳米结构因其独特的物理和化学性质而具有许多有希望的应用。在这项研究中,作者发现普鲁士蓝(脱水亚铁氰化钠)可以通过简单的一步热解过程转化为N掺杂的石墨烯-碳纳米管杂化材料。通过场发射扫描电子显微镜,透射电子显微镜,X射线衍射,拉曼光谱,原子力显微镜和等温分析,作者发现2D石墨烯和1D碳纳米管在生长阶段无缝结合。当用作锂硫电池的硫支架时,它表现出出色的电化学性能,包括高的可逆容量(0.2 C速率下为1221 mA hg(-1)),出色的速率能力(458和220 mA hg(-1))分别在5和10 C的速率下)和出色的循环稳定性(1000和5个和10 C下的321和164 mA hg(-1)(1 C = 1673 mA g(-1))。电化学性能的提高可归因于杂化材料的3D结构,其中,氮掺杂会产生缺陷和活性位点,以改善界面吸附。此外,氮掺杂使多硫化锂能够有效地捕集在阴极内的电活性位上,从而大大提高了循环性能。因此,杂化材料起氧化还原梭的作用,以连接并结合多硫化物,并在还原过程中将其转变为不溶的硫化锂。本文报道的策略可为高性能锂硫电池低成本合成N掺杂石墨烯-碳纳米管杂化材料开辟一条新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号