首页> 外文期刊>Advanced energy materials >Single-Particle Performances and Properties of LiFePO4 Nanocrystals for Li-Ion Batteries
【24h】

Single-Particle Performances and Properties of LiFePO4 Nanocrystals for Li-Ion Batteries

机译:锂离子电池LiFePO4纳米晶体的单颗粒性能及性能

获取原文
获取原文并翻译 | 示例
           

摘要

It has been recently reported that the solution diffusion, efficiency porosity, and electrode thickness can dominate the high rate performance in the 3D-printed and traditional LiMn0.21Fe0.79PO4 electrodes for Li-ions batteries. Here, the intrinsic properties and performances of the single-particle (SP) of LiFePO4 are investigated by developing the SP electrode and creating the SP-model, which will share deep insight on how to further improve the performance of the electrode and related materials. The SP electrode is generated by fully scattering and distributing LiFePO4 nanoparticles to contact with the conductive network of carbon nanotube or conductive carbon to demonstrate the sharpest cyclic voltammetry peak and related SP-model is developed, by which it is found that the interfacial rate constant in aqueous electrolyte is one order of magnitude higher, accounting for the excellent rate performance in aqueous electrolyte for LiFePO4. For the first time it has been proposed that the insight of pre-exponential factor of interface kinetic Arrhenius equation is related to desolvation/solvation process. Thus, this much higher interfacial rate constant in aqueous electrolyte shall be attributed to the much larger pre-exponential factor of interface kinetic Arrhenius equation, because the desolvation process is much easier for Li-ions jumping from aqueous electrolyte to the Janus solid-liquid interface of LiFePO4.
机译:最近有报道说,在3D打印和传统的锂离子电池LiMn0.21Fe0.79PO4电极中,溶液扩散,效率孔隙率和电极厚度可以控制高倍率性能。在这里,通过开发SP电极并创建SP模型来研究LiFePO4的单颗粒(SP)的固有性质和性能,这将对如何进一步改善电极和相关材料的性能具有深刻的见解。通过充分分散和分散LiFePO4纳米粒子使其与碳纳米管或导电碳的导电网络接触而生成SP电极,以证明最尖锐的循环伏安峰,并开发了相关的SP模型,由此发现界面速率常数水性电解质要高一个数量级,这说明了水性电解质对LiFePO4的优异的速率性能。首次提出界面动力学Arrhenius方程的指数前因的洞察力与去溶剂化/溶剂化过程有关。因此,电解质水溶液中更高的界面速率常数应归因于界面动力学Arrhenius方程的更大的指数前因子,因为去离子化过程对于锂离子从电解质水溶液跃迁至Janus固液界面更容易磷酸铁锂。

著录项

  • 来源
    《Advanced energy materials》 |2017年第5期|1601894.1-1601894.10|共10页
  • 作者单位

    Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China;

    Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China;

    Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China;

    Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China;

    Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China;

    Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China;

    Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China;

    Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China;

    Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号