首页> 外文期刊>Advanced energy materials >Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing
【24h】

Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing

机译:另一种策略是通过快速完成阳离子混合来绕开潜在的衰减

获取原文
获取原文并翻译 | 示例
           

摘要

The Li-rich layer-structured oxides are regarded one of the most promising candidates of cathode materials for high energy-density Li-ion batteries. However, the uninterrupted migration of the transition metal (TM) ions during cycling and the resultant continuous fading of their discharge potentials bring challenges to the battery design and impede their commercial applications. Various efforts have been taken to suppress the migration of the TM ions such as surface modification and elemental substitution, but no success has been achieved to date. Another strategy hereby is proposed to address these issues, in which the TM migration is promoted and the layered material is transformed to a rocksalt in the first few charge/discharge cycles by specially designing a novel Li-rich layer-structured Li1.2Mo0.6Fe0.2O2 on the basis of density functional theory calculations. With such, the continuous falling of the discharge potential is detoured due to enhanced completion of the cation mixing. In-depth studies such as aberration-corrected scanning transmission electron microscopy confirm the drastic structural change at the atomic scale, and in situ X-ray absorption spectroscopy and Mossbauer spectroscopy clarify its charge compensation mechanism. This new strategy provides revelation for the development of the Li-rich layered oxides with mitigated potential decay and a longer lifespan.
机译:富锂层状氧化物被认为是高能量密度锂离子电池正极材料最有希望的候选材料之一。然而,过渡金属离子在循环过程中的不间断迁移以及由此产生的放电电位的连续褪色给电池设计带来了挑战,并阻碍了其商业应用。已经进行了各种努力来抑制TM离子的迁移,例如表面改性和元素取代,但是迄今为止还没有成功。提出了解决这些问题的另一种策略,其中通过专门设计新颖的富锂层状Li1.2Mo0.6Fe0来促进TM迁移,并在最初的几个充电/放电循环中将层状材料转变为岩盐。 .2O2根据密度泛函理论计算。这样,由于增强了阳离子混合的完成,放电电位的连续下降被减弱了。像差校正扫描透射电子显微镜等深入研究证实了原子尺度上的急剧结构变化,原位X射线吸收光谱和Mossbauer光谱阐明了其电荷补偿机制。这一新策略为开发富锂的层状氧化物提供了启示,该层状氧化物具有减少的电位衰减和更长的使用寿命。

著录项

  • 来源
    《Advanced energy materials》 |2018年第15期|1703092.1-1703092.9|共9页
  • 作者单位

    Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing Key Lab New Energy Mat & Devices, Key Lab Renewable Energy,Inst Phys, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing Key Lab New Energy Mat & Devices, Key Lab Renewable Energy,Inst Phys, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing Key Lab New Energy Mat & Devices, Key Lab Renewable Energy,Inst Phys, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Lab Adv Mat & Electron Microscopy, Inst Phys, Beijing 100190, Peoples R China;

    Brookhaven Natl Lab, Div Chem, Upton, NY 11973 USA;

    Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing Key Lab New Energy Mat & Devices, Key Lab Renewable Energy,Inst Phys, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Lab Adv Mat & Electron Microscopy, Inst Phys, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China;

    Beijing Univ Chem Technol, Coll Sci, Beijing 100029, Peoples R China;

    Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing Key Lab New Energy Mat & Devices, Key Lab Renewable Energy,Inst Phys, Beijing 100190, Peoples R China;

    Brookhaven Natl Lab, Div Chem, Upton, NY 11973 USA;

    Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing Key Lab New Energy Mat & Devices, Key Lab Renewable Energy,Inst Phys, Beijing 100190, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cation mixing; lithium-rich materials; potential decay;

    机译:阳离子混合;富锂材料;电位衰减;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号