首页> 外文期刊>Advanced energy materials >Conductivity Modulation of 3D-Printed Shellular Electrodes through Embedding Nanocrystalline Intermetallics into Amorphous Matrix for Ultrahigh-Current Oxygen Evolution
【24h】

Conductivity Modulation of 3D-Printed Shellular Electrodes through Embedding Nanocrystalline Intermetallics into Amorphous Matrix for Ultrahigh-Current Oxygen Evolution

机译:3D印刷椎间孔电极的电导率调制通过将纳米晶体金属间金属间剂嵌入到非晶基质中的超高电流氧气进化

获取原文
获取原文并翻译 | 示例
           

摘要

Scaling up commercial hydrogen production by water electrolysis requires efficient oxygen evolution reaction (OER) electrodes that can deliver large current densities (more than 500 mA cm(-2)) at low overpotentials. Here, a highly active and conductive shell-based cellular (Shellular) electrode is developed through a strategy of embedding nanocrystalline Ni3Nb intermetallics into an amorphous NiFe-OOH matrix. The tailor-made laser remelting process enables the dispersive precipitation of corrosion-resistant nanocrystalline Ni3Nb in large numbers. After in situ electrochemical activation in the self-developed growth-mode-control electrolyte, the amorphous NiFe-OOH nanosheets and nanocrystalline Ni3Nb are formed on the as-printed Inconel 718. The conductive atomic force microscopy (C-AFM) studies and density functional theory (DFT) calculations elucidate that nanocrystalline Ni3Nb can simultaneously enhance the conductivity and activity of the catalyst film. Additionally, a Shellular structure inspired by nature is designed, interestingly, its specific surface area keeps constant with increases in porosity. This design can result in a large surface area and high porosity but with less material cost. Using this electrochemically activated Shellular electrode for OER, a high current density of 1500 mA cm(-2) is achieved at a record-low overpotential of 261 mV with good durability. This development may open the door for large-scale industrial water electrolysis.
机译:通过水电解扩大商业氢气生产需要在低过电位下可以提供大电流密度(大于500 mA(-2))的高效氧气进化反应(OER)电极。这里,通过将纳米晶Ni3NB金属间金属间质包埋到无定形NiFe-OOH基质的策略中,开发出高活性和导电的壳壳基细胞(骨科)电极。定制的激光重熔工艺能够大量耐腐蚀纳米晶Ni3NB的分散沉淀。在自发育生长模式控制电解质中原位电化学激活后,在印刷的Inconel 718上形成非晶NiFe-OOH纳米片和纳米晶Ni3NB.导电原子力显微镜(C-AFM)研究和密度官能理论(DFT)计算阐明纳米晶体Ni3NB可以同时增强催化剂膜的电导率和活性。另外,有趣地设计了由自然的灵感的骨灰结构,其比表面积随着孔隙率的增加而保持恒定。这种设计可以导致大表面积和高孔隙度,但材料成本较少。使用该电化学激活的晶体电极用于遮土液,在261mV的记录低的过电位下实现高电流密度为1500mAcm(-2),具有良好的耐用性。这一发展可能打开大型工业水电解的门。

著录项

  • 来源
    《Advanced energy materials》 |2021年第28期|2100968.1-2100968.13|共13页
  • 作者单位

    Natl Univ Singapore Fac Engn Dept Mat Sci & Engn 9 Engn Dr 1 Singapore 117576 Singapore|Harbin Inst Technol State Key Lab Adv Welding & Joining Harbin 150001 Peoples R China|Natl Univ Singapore Fac Engn Dept Mech Engn 9 Engn Dr 1 Singapore 117575 Singapore;

    Natl Univ Singapore Fac Engn Dept Mat Sci & Engn 9 Engn Dr 1 Singapore 117576 Singapore;

    Sun Yat Sen Univ Ctr Phys Mech & Biophys Sch Phys Guangzhou 510275 Guangdong Peoples R China;

    Nanyang Technol Univ Sch Mat Sci & Engn 50 Nanyang Ave Singapore 639798 Singapore;

    Natl Univ Singapore Fac Engn Dept Mech Engn 9 Engn Dr 1 Singapore 117575 Singapore;

    Northwestern Polytech Univ State Key Lab Solidificat Proc Ctr Adv Lubricat & Seal Mat Xian 710072 Peoples R China;

    Natl Univ Singapore Fac Engn Dept Mech Engn 9 Engn Dr 1 Singapore 117575 Singapore;

    Natl Univ Singapore Fac Engn Dept Mat Sci & Engn 9 Engn Dr 1 Singapore 117576 Singapore;

    Northeastern Univ Sch Met Key Lab Electromagnet Proc Mat Minist Educ Shenyang 110819 Peoples R China;

    Beijing Inst Technol Sch Mech Engn Beijing 100081 Peoples R China;

    Nanyang Technol Univ Sch Mat Sci & Engn 50 Nanyang Ave Singapore 639798 Singapore;

    Natl Univ Singapore Fac Engn Dept Mech Engn 9 Engn Dr 1 Singapore 117575 Singapore;

    Harbin Inst Technol State Key Lab Adv Welding & Joining Harbin 150001 Peoples R China;

    Natl Univ Singapore Fac Engn Dept Mech Engn 9 Engn Dr 1 Singapore 117575 Singapore;

    Natl Univ Singapore Fac Engn Dept Mat Sci & Engn 9 Engn Dr 1 Singapore 117576 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D printing; electrochemical activation; nanocrystalline; shellular electrodes; ultrahigh-current oxygen evolution;

    机译:3D打印;电化学激活;纳米晶体;孢子电极;超高电流氧气进化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号