首页> 外文期刊>Advanced energy materials >Advanced Development Strategy of Nano Catalyst and DFT Calculations for Direct Synthesis of Hydrogen Peroxide
【24h】

Advanced Development Strategy of Nano Catalyst and DFT Calculations for Direct Synthesis of Hydrogen Peroxide

机译:纳米催化剂的先进发展策略和直接合成过氧化氢的DFT计算

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrogen peroxide is a simple oxidizing agent. Its environmental benignness and effectiveness have led to a continuous increase in its use and production. Anthraquinone autoxidation (the AO process) is generally used to manufacture hydrogen peroxide (H2O2); however, this complex multi-stage process releases large amounts of organic solvent into the environment and requires significant energy to operate. As a green and energy-efficient production method, the direct synthesis of hydrogen peroxide (DSHP) from molecular hydrogen and oxygen can overcome the disadvantages of the AO process. However, DSHP has remained challenging until recently as severe mass-transfer limitations and unavoidable side reactions result in insufficient selectivity for H2O2. However, beyond the conventional development methods for catalysts, recent advances in chemical and engineering fields can appreciably assist in the discovery of a "dream catalyst" for DSHP; high-end computational methods and the facile surface-controllable syntheses of nanocatalysts. This review addresses how a combination of density functional theory (DFT) calculations and nanocatalyst synthesis technologies lead to the development of high-performance catalysts for DSHP, and provides guidelines on efficient methodologies for the development of catalysts through the use of cutting edge technologies.
机译:过氧化氢是一种简单的氧化剂。其环境良性和有效性导致其使用和生产的持续增加。 Anthraquinone自动氧化(AO过程)通常用于制造过氧化氢(H2O2);然而,这种复杂的多级过程将大量的有机溶剂释放到环境中,并且需要显着的能量来运行。作为绿色和节能的生产方法,来自分子氢和氧的过氧化氢(DSHP)的直接合成可以克服AO工艺的缺点。然而,DSHP持续挑战,直至最近作为严重的传质限制和不可避免的副反应导致H2O2的选择性不足。然而,除了常规的催化剂开发方法之外,化学和工程领域的最近进步可以明显地帮助发现DSHP的“梦催化剂”;高端计算方法和纳米催化剂的易于表面可控合成。该审查涉及密度泛函理论(DFT)计算和纳米催化剂合成技术的组合如何导致DSHP的高性能催化剂的开发,并通过使用尖端技术提供高效方法的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号