...
首页> 外文期刊>Advanced energy materials >Optimizing Redox Reactions in Aprotic Lithium-Sulfur Batteries
【24h】

Optimizing Redox Reactions in Aprotic Lithium-Sulfur Batteries

机译:优化非质子锂 - 硫磺电池中的氧化还原反应

获取原文
获取原文并翻译 | 示例

摘要

The lithium-sulfur battery is regarded as one of the promising energy-storage devices beyond lithium-ion battery due to its overwhelming energy density. The aprotic Li-S electrochemistry is hampered by issues arising from the complex solid-liquid-solid conversion process. Recently, tremendous efforts have been made to optimize the electrochemical reaction in Li-S batteries through rationally designing compositions and structures of cathodes. However, a deep and comprehensive understanding of the actual mechanisms of Li-S batteries and their impact on the performance is still insufficient. The vigorous development of various electrochemical analysis and in situ techniques establish a bridge between the microstructure of components and the macroscopic electrochemical performance, thus providing more scientific guidance for the optimal design of Li-S batteries. In this review, based on insights into the mechanism of aprotic Li-S electrochemistry with the aid of in situ characterization and electrochemical methods, the advanced innovations in optimizing Li-S batteries are systematically summarized, including the materials design, cathode configurations optimization, and electrolyte engineering, with the aim to gain a comprehensive understanding of cathodic redox processes and thus achieve high-performance Li-S batteries. The current status and possible future directions of the field are accordingly outlined.
机译:由于其压倒性的能量密度,锂 - 硫电池被认为是超出锂离子电池的有前途的能量储存装置之一。通过复杂的固体 - 固体 - 固体转化方法产生的问题,不精确的Li-S电化学受到阻碍。最近,已经通过合理设计组合物和结构的结构来优化LI-S电池的电化学反应。然而,对Li-S电池的实际机制及其对性能的影响深度和全面的了解仍然不足。各种电化学分析的蓬勃发展和原位技术建立了组件微观结构与宏观电化学性能之间的桥梁,从而为LI-S电池的最佳设计提供了更科学的指导。在本次综述中,基于借助于原位特征和电化学方法对非质子Li-S电化学机制的见解,系统总结了优化Li-S电池的先进创新,包括材料设计,阴极配置优化和电解质工程,旨在全面了解阴极氧化还原过程,从而实现高性能LI-S电池。因此,概述了该字段的当前状态和可能的未来方向。

著录项

  • 来源
    《Advanced energy materials 》 |2020年第42期| 2002180.1-2002180.26| 共26页
  • 作者单位

    Univ Elect Sci & Technol China State Key Lab Elect Thin Film & Integrated Device Chengdu 610054 Peoples R China;

    Univ Elect Sci & Technol China State Key Lab Elect Thin Film & Integrated Device Chengdu 610054 Peoples R China;

    Univ Elect Sci & Technol China State Key Lab Elect Thin Film & Integrated Device Chengdu 610054 Peoples R China;

    Univ Elect Sci & Technol China State Key Lab Elect Thin Film & Integrated Device Chengdu 610054 Peoples R China;

    Univ Elect Sci & Technol China State Key Lab Elect Thin Film & Integrated Device Chengdu 610054 Peoples R China;

    Univ Elect Sci & Technol China State Key Lab Elect Thin Film & Integrated Device Chengdu 610054 Peoples R China;

    Chengdu Univ Technol Coll Mat & Chem & Chem Engn Chengdu 610059 Peoples R China;

    Chengdu Univ Technol Coll Mat & Chem & Chem Engn Chengdu 610059 Peoples R China;

    Univ Elect Sci & Technol China State Key Lab Elect Thin Film & Integrated Device Chengdu 610054 Peoples R China;

    Univ Elect Sci & Technol China State Key Lab Elect Thin Film & Integrated Device Chengdu 610054 Peoples R China;

    Univ Elect Sci & Technol China State Key Lab Elect Thin Film & Integrated Device Chengdu 610054 Peoples R China;

    Univ Elect Sci & Technol China State Key Lab Elect Thin Film & Integrated Device Chengdu 610054 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    energy storage; enhancement strategies; Li-S batteries; reaction mechanism; redox reactions;

    机译:储能;增强策略;LI-S电池;反应机制;氧化还原反应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号