...
首页> 外文期刊>Advanced energy materials >In Situ Fragmented Bismuth Nanoparticles for Electrocatalytic Nitrogen Reduction
【24h】

In Situ Fragmented Bismuth Nanoparticles for Electrocatalytic Nitrogen Reduction

机译:原位分散的铋纳米颗粒用于电催化氮气还原

获取原文
获取原文并翻译 | 示例

摘要

The electrochemical nitrogen reduction reaction (NRR) is a promising alternative to the energy-intensive Haber-Bosch process for ammonia synthesis. Among the possible electrocatalysts, bismuth-based materials have shown unique NRR properties due to their electronic structures and poor hydrogen evolution activity. However, identification of the active sites and reaction mechanism is still difficult due to structural and chemical changes under reaction potentials. Herein, in situ Raman spectroscopy, complemented by electron microscopy, is employed to investigate the structural and chemical transformation of the Bi species during the NRR. Nanorod-like bismuth-based metal-organic frameworks are reduced in situ and fragment into densely contacted Bi(0)nanoparticles under the applied potentials. The fragmented Bi(0)nanoparticles exhibit excellent NRR performance in both neutral and acidic electrolytes, with an ammonia yield of 3.25 +/- 0 .08 mu g cm(-2)h(-1)at -0.7 V versus reversible hydrogen electrode and a Faradaic efficiency of 12.11 +/- 0.84% at -0.6 V in 0.10mNa(2)SO(4). Online differential electrochemical mass spectrometry detects the production of NH(3)and N(2)H(2)during NRR, suggesting a possible pathway through two-step reduction and decomposition. This work highlights the importance of monitoring and optimizing the electronic and geometric structures of the electrocatalysts under NRR conditions.
机译:电化学氮还原反应(NRR)是对氨合成的能量密集的HABER-BOSCH方法的有希望的替代品。在可能的电催化剂中,由于其电子结构和氢进化活性差,基于铋的材料显示出独特的NRR性能。然而,由于在反应势下的结构和化学变化,鉴定活性位点和反应机制仍然困难。在此,在电子显微镜互补的原位拉曼光谱,用于研究NRR期间BI物种的结构和化学转化。纳米棒状的基于铋的金属 - 有机骨架在施加电位下原位和片段降低到密集接触的Bi(0)纳米颗粒中。碎裂的Bi(0)纳米颗粒在中性和酸性电解质中表现出优异的NRR性能,氨产率为3.25 +/-0.08μmgcm(-2)h(-1),在-0.7V与可逆氢电极1.010MNA(2)所以(4)中,游览效率为12.11 +/- 0.84%的-0.6 v。在线差分电化学质谱法检测NRR期间NH(3)和N(2)H(2)的产生,表明通过两步还原和分解的可能途径。这项工作强调了监测和优化NRR条件下电催化剂的电子和几何结构的重要性。

著录项

  • 来源
    《Advanced energy materials 》 |2020年第33期| 2001289.1-2001289.8| 共8页
  • 作者单位

    Univ Adelaide Sch Chem Engn & Adv Mat Ctr Mat Energy & Catalysis Adelaide SA 5005 Australia;

    Univ Adelaide Sch Chem Engn & Adv Mat Ctr Mat Energy & Catalysis Adelaide SA 5005 Australia;

    Univ Adelaide Sch Chem Engn & Adv Mat Ctr Mat Energy & Catalysis Adelaide SA 5005 Australia;

    Univ Adelaide Sch Chem Engn & Adv Mat Ctr Mat Energy & Catalysis Adelaide SA 5005 Australia;

    Univ Adelaide Sch Chem Engn & Adv Mat Ctr Mat Energy & Catalysis Adelaide SA 5005 Australia;

    Univ Adelaide Sch Chem Engn & Adv Mat Ctr Mat Energy & Catalysis Adelaide SA 5005 Australia;

    Univ Adelaide Sch Chem Engn & Adv Mat Ctr Mat Energy & Catalysis Adelaide SA 5005 Australia;

    Univ Adelaide Sch Chem Engn & Adv Mat Ctr Mat Energy & Catalysis Adelaide SA 5005 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    bismuth nanoparticles; electrocatalysis; nanoparticle fragments; in situ characterization; nitrogen reduction reaction;

    机译:铋纳米颗粒;电催化;纳米粒子片段;原位表征;氮素还原反应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号