首页> 外文期刊>Advanced energy materials >Ordered Nanoscale Heterojunction Architecture for Enhanced Solution-Based CulnGaS_2 Thin Film Solar Cell Performance
【24h】

Ordered Nanoscale Heterojunction Architecture for Enhanced Solution-Based CulnGaS_2 Thin Film Solar Cell Performance

机译:有序纳米级异质结架构,用于增强基于解决方案的Culngas_2薄膜太阳能电池性能

获取原文
获取原文并翻译 | 示例
           

摘要

Nanopatterned CuInGaS2 (CIGS) thin films synthesized by a sol-gel-based solution method and a nanoimprint lithography technique to achieve simultaneous photonic and electrical enhancements in thin film solar cell applications are demonstrated. The interdigitated CIGS nanopatterns in adjacent CdS layer form an ordered nanoscale heterojunction of optical contrast to create a light trapping architecture. This architecture concomitantly leads to increased junction area between the p-CIGS-CdS interface, and thereby influences effective charge transport. The electron beam induced current and capacitance-voltage characterization further supports the large carrier collection area and small depletion region of the nanopatterned CIGS solar cell devices. This strategic geometry affords localization of incident light inside and between the nanopatterns, where created excitons are easily dissociated, and it leads to the enhanced current generation of absorbed light. Ultimately, this approach improves the efficiency of the nanopatterned CIGS solar cell by 55% compared to its planar counterpart, and offers the possibility of simultaneous management for absorption and charge transport through a nanopatterning process.
机译:通过基于溶胶 - 凝胶的溶液方法合成的纳米透明构件和薄膜以实现薄膜太阳能电池应用中的同时光子和电气增强,合成的纳米透明薄膜(CIGS)薄膜。相邻CDS层中的indradigated的CIG纳米图示出了光学对比度的有序纳米级异质结,以产生光捕获架构。该架构伴随着P-CIGS / N-CDS接口之间的连接区域增加,从而影响有效的电荷运输。电子束感应电流和电容 - 电压表征进一步支持纳米透明的CIGS太阳能电池装置的大型载流子收集区域和小耗尽区域。这种战略几何形状在内部和纳米模式之间提供入射光的定位,其中产生的激子容易解离,并且它导致增强的电流产生的吸收光。最终,与平面对应物相比,这种方法提高了纳米透明的CIGS太阳能电池的效率55%,并提供了通过纳米透明方法同时管理吸收和电荷运输的可能性。

著录项

  • 来源
    《Advanced energy materials》 |2016年第24期|1601114.1-1601114.8|共8页
  • 作者单位

    Kyung Hee Univ Dept Phys Seoul 02453 South Korea;

    Korea Inst Sci & Technol Seoul 02792 South Korea;

    Kyung Hee Univ Dept Appl Chem Yongin 17104 Gyeonggi South Korea;

    Kyung Hee Univ Dept Phys Seoul 02453 South Korea;

    Korea Inst Sci & Technol Seoul 02792 South Korea|Kyung Hee Univ Dept Appl Chem Yongin 17104 Gyeonggi South Korea;

    Korea Inst Sci & Technol Seoul 02792 South Korea;

    Kyung Hee Univ Dept Appl Chem Yongin 17104 Gyeonggi South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号