首页> 外文期刊>Advanced energy materials >Elucidating the Sole Contribution from Electromagnetic Near-Fields in Plasmon-Enhanced Cu_2O Photocathodes
【24h】

Elucidating the Sole Contribution from Electromagnetic Near-Fields in Plasmon-Enhanced Cu_2O Photocathodes

机译:从等离子体增强的Cu_2O光电量中的电磁近场阐明唯一的贡献

获取原文
获取原文并翻译 | 示例
           

摘要

Despite many promising reports of plasmon-enhanced photocatalysis, the inability to identify the individual contributions from multiple enhancement mechanisms has delayed the development of general design rules for engineering efficient plasmonic photocatalysts. Herein, a plasmonic photocathode comprised of Au@SiO2 (core@shell) nanoparticles embedded within a Cu2O nanowire network is constructed to exclusively examine the contribution from one such mechanism: electromagnetic near-field enhancement. The influence of the local electromagnetic field intensity is correlated with the overall lightharvesting efficiency of the device through variation of the SiO2 shell thickness (5-22 nm) to systematically tailor the distance between the plasmonic Au nanoparticles and the Cu2O nanowires. A threefold increase in device photocurrent is achieved upon integrating the Au@SiO2 nanoparticles into the Cu2O nanowire network, further enabling a 40% reduction in semiconductor film thickness while maintaining photocathode performance. Photoelectrochemical results are further correlated with photoluminescence studies and optical simulations to confirm that the near-field enhancement is the sole mechanism responsible for increased light absorption in the plasmonic photocathode.
机译:尽管有许多有前途的等离子体增强的光催化报告,但无法确定多种增强机制的个体贡献延迟了工程高效血浆光催化剂的一般设计规则的发展。在此,构成包括在CU2O纳米线网络内的Au @ SiO 2(核心壳)纳米颗粒组成的等离子体光电阴极,以专门检查来自一种这种机制的贡献:电磁近场增强。局部电磁场强度的影响与通过SiO2壳厚度(5-22nm)的变化来系统地定制等级纳米颗粒和Cu2O纳米线之间的距离的整体宽度升高。在将Au @ SiO2纳米颗粒集成到Cu2O纳米线网络中,实现了装置光电流的三倍增加,进一步能够降低半导体膜厚度的40%,同时保持光电阴极性能。光电化学结果与光致发光研究和光学模拟进一步相关,以确认近场增强是负责增加等离子体光电阴极中的光吸收的唯一机制。

著录项

  • 来源
    《Advanced energy materials》 |2016年第1期|1501250.1-1501250.10|共10页
  • 作者单位

    Univ Florida Dept Chem Gainesville FL 32611 USA|Univ Florida Ctr Nanostruct Elect Mat Gainesville FL 32611 USA;

    Univ Florida Dept Chem Gainesville FL 32611 USA|Univ Florida Ctr Nanostruct Elect Mat Gainesville FL 32611 USA;

    Brookhaven Natl Lab Ctr Funct Nanomat Upton NY 11973 USA;

    Univ Florida Dept Chem Gainesville FL 32611 USA|Univ Florida Ctr Nanostruct Elect Mat Gainesville FL 32611 USA;

    Univ Florida Dept Chem Gainesville FL 32611 USA|Univ Florida Ctr Nanostruct Elect Mat Gainesville FL 32611 USA;

    Univ Florida Dept Chem Gainesville FL 32611 USA|Univ Florida Ctr Nanostruct Elect Mat Gainesville FL 32611 USA;

    Univ Florida Dept Chem Gainesville FL 32611 USA|Univ Florida Ctr Nanostruct Elect Mat Gainesville FL 32611 USA;

    Nanjing Tech Univ Jiangsu Natl Synergist Innovat Ctr Adv Mat Key Lab Flexible Elect Nanjing 211816 Jiangsu Peoples R China|Nanjing Tech Univ Jiangsu Natl Synergist Innovat Ctr Adv Mat Inst Adv Mat Nanjing 211816 Jiangsu Peoples R China;

    Brookhaven Natl Lab Ctr Funct Nanomat Upton NY 11973 USA;

    Nanjing Tech Univ Jiangsu Natl Synergist Innovat Ctr Adv Mat Key Lab Flexible Elect Nanjing 211816 Jiangsu Peoples R China|Nanjing Tech Univ Jiangsu Natl Synergist Innovat Ctr Adv Mat Inst Adv Mat Nanjing 211816 Jiangsu Peoples R China;

    Brookhaven Natl Lab Ctr Funct Nanomat Upton NY 11973 USA;

    Univ Florida Dept Chem Gainesville FL 32611 USA|Univ Florida Ctr Nanostruct Elect Mat Gainesville FL 32611 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号