首页> 外文期刊>Advanced energy materials >Light Absorption and Recycling in Hybrid Metal Halide Perovskite Photovoltaic Devices
【24h】

Light Absorption and Recycling in Hybrid Metal Halide Perovskite Photovoltaic Devices

机译:混合金属卤化物钙钛矿光伏器件中的光吸收和回收。

获取原文
获取原文并翻译 | 示例
           

摘要

The production of highly efficient single- and multijunction metal halide perovskite (MHP) solar cells requires careful optimization of the optical and electrical properties of these devices. Here, precise control of CH3NH3PbI3 perovskite layers is demonstrated in solar cell devices through the use of dual source coevaporation. Light absorption and device performance are tracked for incorporated MHP films ranging from approximate to 67 nm to approximate to 1.4 mu m thickness and transfer-matrix optical modeling is utilized to quantify optical losses that arise from interference effects. Based on these results, a device with 19.2% steady-state power conversion efficiency is achieved through incorporation of a perovskite film with near-optimum predicted thickness (approximate to 709 nm). Significantly, a clear signature of photon reabsorption is observed in perovskite films that have the same thickness (approximate to 709 nm) as in the optimized device. Despite the positive effect of photon recycling associated with photon reabsorption, devices with thicker (>750 nm) MHP layers exhibit poor performance owing to competing nonradiative charge recombination in a "dead-volume" of MHP. Overall, these findings demonstrate the need for fine control over MHP thickness to achieve the highest efficiency cells, and accurate consideration of photon reabsorption, optical interference, and charge transport properties.
机译:高效单结和多结金属卤化物钙钛矿(MHP)太阳能电池的生产需要仔细优化这些设备的光学和电学性能。在此,通过使用双源共蒸发技术在太阳能电池设备中展示了对CH3NH3PbI3钙钛矿层的精确控制。跟踪并入的MHP薄膜的光吸收和器件性能,其范围从大约67 nm到大约1.4μm厚度,并利用传输矩阵光学模型来量化由干涉效应引起的光学损耗。基于这些结果,通过掺入具有接近最佳预测厚度(约709 nm)的钙钛矿薄膜,可获得具有19.2%稳态功率转换效率的器件。值得注意的是,在钙钛矿薄膜中观察到了清晰的光子重吸收特征,该钙钛矿薄膜的厚度与优化器件的厚度相同(约709 nm)。尽管光子回收与光子重吸收有关,具有积极的作用,但由于MHP的“死体积”中竞争性的非辐射电荷复合,具有较厚(> 750 nm)MHP层的器件仍表现出较差的性能。总体而言,这些发现表明需要对MHP厚度进行精细控制,以实现效率最高的电池,并需要准确考虑光子的重吸收,光干扰和电荷传输特性。

著录项

  • 来源
    《Advanced energy materials》 |2020年第10期|1903653.1-1903653.8|共8页
  • 作者

  • 作者单位

    Univ Oxford Dept Phys Clarendon Lab Parks Rd Oxford OX1 3PU England;

    Univ Oxford Dept Phys Clarendon Lab Parks Rd Oxford OX1 3PU England|Princeton Univ Princeton Inst Sci & Technol Mat Princeton NJ 08540 USA;

    Australian Natl Univ Res Sch Phys Canberra ACT 2601 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    light management; photon reabsorption; quantum efficiency; thickness dependence; vapor deposition;

    机译:灯光管理;光子重吸收;量子效率厚度依赖性气相沉积;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号