首页> 外文期刊>Advanced energy materials >Let It Catch: A Short-Branched Protein for Efficiently Capturing Polysulfides in Lithium–Sulfur Batteries
【24h】

Let It Catch: A Short-Branched Protein for Efficiently Capturing Polysulfides in Lithium–Sulfur Batteries

机译:让它捉住:一种有效捕获锂硫电池中多硫化物的短分支蛋白

获取原文
获取原文并翻译 | 示例
           

摘要

Uncovering the key contributions of molecular details to capture polysulfides is important for applying suitable materials that can effectively restrain the shuttle effect in advanced lithium-sulfur batteries. This is particularly true for natural biomolecules with substantial structural and compositional diversities strongly impacting their functions. Here, natural gelatin and zein proteins are first denatured and then adopted for fabrication of nanocomposite interlayers via functionalization of carbon nanofibers. From the results of experiment and molecular dynamic simulations, it is found that the lengths of the sidechains on the two proteins play critical roles. The short-branched gelatin shows significantly stronger adsorption of polysulfides, as compared with zein comprising many long-chain residues. The gelatin-based interlayer, along with its good porous structures/electrical conductivity, greatly suppresses the shuttle effect and yields exceptional electrochemical performance. Furthermore, the implementation of proteins as functional binder additives further supports the finding that gelatin enables stronger polysulfide-trapping. As a result, high-loading sulfur cathodes (9.4 mg cm(-2)) are realized, which deliver a high average areal capacity of 8.2 mAh cm(-2) over 100 cycles at 0.1 A g(-1). This work demonstrates the importance of sidechain length in capturing polysulfides and provides a new insight in selecting and design of desired polysulfide-binding molecules.
机译:揭示分子细节对捕获多硫化物的关键作用,对于应用可以有效抑制高级锂硫电池穿梭效应的合适材料非常重要。对于具有显着影响其功能的实质性结构和组成多样性的天然生物分子而言,尤其如此。在这里,天然明胶和玉米醇溶蛋白首先被变性,然后通过碳纳米纤维的功能化被用于制造纳米复合中间层。从实验和分子动力学模拟的结果,发现两种蛋白质上的侧链长度起关键作用。与包含许多长链残基的玉米醇溶蛋白相比,该短分支明胶显示出对多硫化物的明显更强的吸附。基于明胶的中间层及其良好的多孔结构/电导率,极大地抑制了穿梭效应并产生出色的电化学性能。此外,蛋白质作为功能性粘合剂添加剂的实施进一步支持了明胶能够实现更强的聚硫捕获的发现。结果,实现了高负载硫阴极(9.4 mg cm(-2)),该阴极在0.1 A g(-1)的100个循环中提供了8.2 mAh cm(-2)的高平均面积容量。这项工作证明了侧链长度在捕获多硫化物方面的重要性,并为选择和设计所需的多硫化物结合分子提供了新的见识。

著录项

  • 来源
    《Advanced energy materials》 |2020年第9期|1903642.1-1903642.12|共12页
  • 作者单位

    Washington State Univ Sch Mech & Mat Engn Pullman WA 99164 USA|Chongqing Univ Coll Mat Sci & Engn 174 Shezhengjie Chongqing 400044 Peoples R China;

    Washington State Univ Sch Mech & Mat Engn Pullman WA 99164 USA;

    Washington State Univ Dept Plant Pathol Pullman WA 99164 USA;

    Washington State Univ Sch Mech & Mat Engn Pullman WA 99164 USA|Huazhong Agr Univ Coll Food Sci & Technol 1 Shizishan Rd Wuhan 430070 Hubei Peoples R China|Huazhong Agr Univ Key Lab Environm Correlat Dietol 1 Shizishan Rd Wuhan 430070 Hubei Peoples R China;

    Chongqing Univ Coll Mat Sci & Engn 174 Shezhengjie Chongqing 400044 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biopolymers; gelatin; lithium-sulfur batteries; molecular structures; zein;

    机译:生物聚合物明胶;锂硫电池;分子结构玉米蛋白;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号