...
首页> 外文期刊>Advanced energy materials >Low-Temperature Reduction Strategy Synthesized Si/Ti_3C_2 MXene Composite Anodes for High-Performance Li-Ion Batteries
【24h】

Low-Temperature Reduction Strategy Synthesized Si/Ti_3C_2 MXene Composite Anodes for High-Performance Li-Ion Batteries

机译:高性能锂离子电池的低温还原策略合成的Si / Ti_3C_2 MXene复合阳极

获取原文
获取原文并翻译 | 示例

摘要

Silicon is attracting enormous attention due to its theoretical capacity of 4200 mAh g(-1) as an anode for Li-ion batteries (LIBs). It is of fundamental importance and challenge to develop low-temperature reaction route to controllably synthesize Si/Ti3C2 MXene LIBs anodes. Herein, a novel and efficient strategy integrating in situ orthosilicate hydrolysis and a low-temperature reduction process to synthesize Si/Ti3C2 MXene composites is reported. The hydrolysis of tetraethyl orthosilicate leads to homogenous nucleation and growth of SiO2 nanoparticles on the surface of Ti3C2 MXene. Subsequently, SiO2 nanoparticles are reduced to Si via a low-temperature (200 degrees C) reduction route. Importantly, Ti3C2 MXene not only provides fast transfer channels for Li+ and electrons, but also relieves volume expansion of Si during cycling. Moreover, the characteristics of excellent pseudocapacitive performance and high conductivity of Ti3C2 MXene can synergistically contribute to the enhancement of energy storage performance. As expected, Ti3C2/Si anode exhibits an outstanding specific capacity of 1849 mAh g(-1) at 100 mA g(-1), even retaining 956 mAh g(-1) at 1 A g(-1). The low-temperature synthetic route to Si/Ti3C2 MXene electrodes and involved battery-capacitive dual-model energy storage mechanism has potential in the design of novel high-performance electrodes for energy storage devices.
机译:硅由于其理论容量为4200 mAh g(-1)作为锂离子电池(LIB)的阳极而引起了极大的关注。开发低温反应路线以可控制地合成Si / Ti3C2 MXene LIBs阳极具有根本的重要性和挑战。在本文中,报道了一种新颖且有效的策略,其将原位原硅酸盐水解和低温还原过程相结合以合成Si / Ti3C2 MXene复合材料。原硅酸四乙酯的水解导致Ti3C2 MXene表面上SiO2纳米颗粒的均匀成核和生长。随后,通过低温(200摄氏度)还原途径将SiO2纳米颗粒还原为Si。重要的是,Ti3C2 MXene不仅为Li +和电子提供了快速传输通道,而且还减轻了循环过程中Si的体积膨胀。此外,Ti3C2 MXene的优异的假电容性能和高电导率的特性可以协同促进储能性能的提高。如预期的那样,Ti3C2 / Si阳极在100 mA g(-1)时表现出出色的比容量1849 mAh g(-1),甚至在1 A g(-1)时仍保留956 mAh g(-1)。通往Si / Ti3C2 MXene电极的低温合成路线以及涉及的电池电容双模能量存储机制在设计用于能量存储设备的新型高性能电极方面具有潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号