...
首页> 外文期刊>Acta Mechanica >Quantification of structural and material failure mechanisms across different length scales: from instability to brittle-ductile transitions
【24h】

Quantification of structural and material failure mechanisms across different length scales: from instability to brittle-ductile transitions

机译:量化不同长度尺度上的结构和材料破坏机制:从不稳定性到脆性-延性转变

获取原文
获取原文并翻译 | 示例
           

摘要

Structures may fail due to a myriad of different causes. Often, distinction is made between structural and material failure, that means a structure can fail, while the material is still intact (this is the case in so-called stability loss), or the material fails, which, as consequence, may lead to structural failure. The material behavior may turn out difficult to be mathematically guessed at the macro-level. On the other hand, a lot may be known about the chemistry or the microstructure of the material of interest. Herein, we aim at categorizing different scenarios which in the end provoke structural failure, discussing various cases investigated during the last five years, at the Institute for Mechanics of Materials and Structures of Vienna University of Technology: A well-chosen eigenvalue problem shows considerable potential for categorizing stability loss. We then turn to complex composite materials with a hierarchical organization, where a single constituent dominates the overall quasi-brittle failure of the material, such as lignin in wood and wood products, or the cement–water reaction products (shortly called hydrates) in cement-based materials. The picture changes if the first inelastically behaving constituent is related to ductile load carrying, then the loads within the microstructure are re-distributed before the overall material fails: this turns out to be the case in bone. Finally, due to highly confined multiaxial stress states, the elastic portion of the overall energy invested into the material may become negligible—and then yield design analysis employed on material volumes gives an idea of the highly ductile behavior of complex confined materials, such as asphalt. What integrates all the reported cases is the high capacity of mature mathematical and mechanical formulations to reveal the intricate, yet decipherable nature of the (continuum) mechanics of materials and structures.
机译:由于各种不同的原因,结构可能会失效。通常,在结构失效和材料失效之间进行区分,这意味着在材料仍然完好无损的情况下,结构可能失效(所谓的稳定性损失就是这种情况),或者材料失效,因此可能导致结构性故障。物质的行为可能很难在宏观上从数学上进行猜测。另一方面,关于目标材料的化学或微观结构可能知道很多。在此,我们旨在对最终导致结构破坏的不同情况进行分类,讨论在维也纳工业大学材料与结构力学研究所最近五年研究的各种情况:精心选择的特征值问题显示出巨大的潜力用于将稳定性损失分类。然后,我们使用具有层次结构的复杂复合材料,其中单一成分主导了该材料的整体准脆性破坏,例如木材和木制品中的木质素或水泥中的水泥-水反应产物(简称为水合物)基材料。如果第一个非弹性行为与延性载荷承载有关,那么情况就发生了变化,然后在整个材料失效之前,重新组织了微结构内的载荷:这在骨骼中就是这种情况。最后,由于高度受限的多轴应力状态,投入到材料中的总能量的弹性部分可能变得微不足道,然后对材料体积进行的屈服设计分析给出了复杂受限材料(例如沥青)的高度延展性的概念。整合了所有已报道案例的是,成熟的数学和机械公式具有很高的能力,可以揭示材料和结构的(连续)力学的复杂但可识别的性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号