首页> 外文期刊>Acta Geotechnica >Analyses on granular mass movement mechanics and deformation with distinct element numerical modeling: implications for large-scale rock and debris avalanches
【24h】

Analyses on granular mass movement mechanics and deformation with distinct element numerical modeling: implications for large-scale rock and debris avalanches

机译:具有独特元素数值模型的颗粒质量运动力学和变形分析:对大规模岩石和碎屑雪崩的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A large-scale avalanche of Earth material is modeled here as a granular flow using a distinct element numerical model PFC 2D. Such failures occur in a variety of geological settings and are known to occur frequently over geologic time-scales transporting significant volumes of material basinward. Despite this, they remain poorly understood. The model used here begins with a listric failure, typical of the flank collapse of a volcanic cone, and describes the movement of an assembly of several thousand particles from failure to deposition. Within the model, each particle possesses its own material properties and interacts with its immediate neighbors and/or the basal boundary during emplacement. The general mechanics of the particle assembly are observed by monitoring the stresses, displacements, and velocities of distinct sections of the avalanche body. We monitor the avalanches’ energy regime (e.g., gravitational influence, energy dissipation by friction, kinetic energy evolution, and avalanche body strain). The addition of colored markers of varying geometry to the pre-failure avalanche was also used to make qualitative observations on the internal deformation that occurs during avalanche emplacement. A general stretching and thinning of the avalanche is observed. Monitoring of vertical and horizontal variations in stress, strain, porosity, and relative particle stability indicate that the lower more proximal sections of the avalanche are subject to higher stresses. These stresses are observed to be most significant during the initial phases of failure but decline thereafter; a situation likely to be conducive to block fragmentation and in developing a basal shear layer in real-world events. The model also shows how an avalanche which is initially influenced purely by gravity (potential energy) develops into a fully flowing assemblage as downslope momentum is gained and kinetic energy increases. The horizontal transition where the failure meets the run-out surface is recognized as a key area in emplacement evolution. The model has particular relevance to volcanic flank collapses and consequently the implications of the model to these types of failure and the geological products that result are considered in detail although the model is relevant to any form of large-scale rock or debris avalanche.
机译:使用独特的元素数值模型PFC 2D 将大规模的地球物质雪崩模型化为颗粒流。这种破坏发生在各种地质环境中,并且在地质时标上经常发生,将大量的物质向盆地输送。尽管如此,他们仍然知之甚少。此处使用的模型以典型的火山锥侧面坍塌为例,从列表破坏开始,描述了数千个粒子的组装从破坏到沉积的运动。在模型内,每个粒子都具有自己的材料属性,并且在放置过程中会与其直接邻居和/或基础边界进行交互。通过监视雪崩体不同部分的应力,位移和速度,可以观察到粒子装配的一般力学。我们监视雪崩的能量状态(例如,重力影响,摩擦耗能,动能演化和雪崩体应变)。还向故障前雪崩添加了不同几何形状的彩色标记,以对雪崩放置期间发生的内部变形进行定性观察。观察到雪崩的一般拉伸和变薄。对应力,应变,孔隙率和相对颗粒稳定性的垂直和水平变化的监测表明,雪崩的越靠近下部越容易受到较高的应力。观察到这些应力在故障的初始阶段最为明显,但此后下降。在实际事件中可能有利于阻滞碎裂和形成基底剪切层的情况。该模型还显示了最初受重力(势能)影响的雪崩如何在获得下坡动量和动能增加时发展为完全流动的集合体。失效与跳动面相遇的水平过渡被认为是位移演化的关键区域。尽管该模型与任何形式的大规模岩石或碎屑雪崩有关,但该模型与火山后倾角特别相关,因此,该模型对这些类型的破坏和产生的地质产物的含义也得到了详细考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号