...
首页> 外文期刊>ACM Transactions on Graphics >Efficient Rendering of Heterogeneous Polydisperse Granular Media
【24h】

Efficient Rendering of Heterogeneous Polydisperse Granular Media

机译:均质多分散粒状介质的高效绘制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We address the challenge of efficiently rendering massive assembliesrnof grains within a forward path-tracing framework. Previousrnapproaches exist for accelerating high-order scattering for a limited,rnand static, set of granular materials, often requiring scene-dependentrnprecomputation. We significantly expand the admissible regime ofrngranular materials by considering heterogeneous and dynamic granularrnmixtures with spatially varying grain concentrations, pack rates,rnand sizes. Our method supports both procedurally generated grainrnassemblies and dynamic assemblies authored in off-the-shelf particlernsimulation tools. The key to our speedup lies in two complementaryrnaggregate scattering approximations which we introduced to jointlyrnaccelerate construction of short and long light paths. For low-orderrnscattering, we accelerate path construction using novel grain scatteringrndistribution functions (GSDF) which aggregate intra-grain lightrntransport while retaining important grain-level structure. For highorderrnscattering, we extend prior work on shell transport functionsrn(STF) to support dynamic, heterogeneous mixtures of grains withrnvarying sizes. We do this without a scene-dependent precomputationrnand show how this can also be used to accelerate light transport in arbitraryrncontinuous heterogeneous media. Our multi-scale renderingrnautomatically minimizes the usage of explicit path tracing to onlyrnthe first grain along a light path, or can avoid it completely, whenrnappropriate, by switching to our aggregate transport approximations.rnWe demonstrate our technique on animated scenes containing heterogeneousrnmixtures of various types of grains that could not previouslyrnbe rendered efficiently. We also compare to previous work on a simplerrnclass of granular assemblies, reporting significant computationrnsavings, often yielding higher accuracy results.
机译:我们解决了在前向路径跟踪框架内有效渲染大量assemblyrnof晶粒的挑战。存在先前的方法来加速有限的,静态的静态粒状材料集的高阶散射,通常需要依赖于场景的预计算。通过考虑具有空间变化的颗粒浓度,堆积率,尺寸和大小的异质和动态颗粒混合物,我们显着扩展了颗粒材料的可接受范围。我们的方法既支持程序生成的颗粒组件,也支持使用现成的粒子模拟工具编写的动态组件。我们加快速度的关键在于我们引入了两个互补的聚集体散射近似值,以共同加速短和长光路的构建。对于低阶散射,我们使用新的晶粒散射分布函数(GSDF)加速了路径构建,该函数聚集了晶粒内的光传输,同时保留了重要的晶粒级结构。对于高阶散射,我们扩展了先前关于壳传输函数(STF)的工作,以支持尺寸可变的动态,非均质颗粒混合物。我们在没有场景依赖的预计算的情况下进行了此操作,并说明了如何将其也用于加速任意连续的异质介质中的光传输。我们的多尺度渲染会自动最小化显式路径追踪的使用,从而仅沿光路仅对第一个颗粒进行渲染,或者在适当时通过切换到总输运近似值来完全避免使用它。我们在包含各种类型异质混合物的动画场景中演示了我们的技术以前无法有效渲染的颗粒。我们还与以前关于粒状装配的简单类的工作进行了比较,报告了显着的计算节省,通常会产生更高的精度结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号