...
首页> 外文期刊>AAPG Bulletin >Geomechanical, Microstructural, and Petrophysical Evolution in Experimentally Reactivated Cataclasites: Applications to Fault Seal Prediction
【24h】

Geomechanical, Microstructural, and Petrophysical Evolution in Experimentally Reactivated Cataclasites: Applications to Fault Seal Prediction

机译:实验性重新活化的碎裂岩中的地质力学,微观结构和岩石物理演化:在断层预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

Failure envelopes for well-lithified cataclastic fault rocks from the Otway Basin, Australia, where fault reactivation is a significant risk to trap integrity, have been determined through triaxial testing. Geomechanical analyses indicate that cemented cataclasites exhibit significant cohesive strength and that fault reactivation and trap breach is influenced by the development of shear, tensile, and mixed-mode fractures. The mechanics of the fracturing process are influenced by grain strength and cataclasite morphology. Cemented cataclasites are more prone to failure than are reservoir sandstones under low differential stress conditions, as a result of a relatively low cohesive strength and higher friction coefficient. As such, the geomechanical property differential between cataclastic faults and undeformed reservoir strata may impact significantly on seal integrity during reactivation. Intact cataclasite seal capacity exceeds 2400 psi (16.5 MPa). Following reactivation seal capacity is reduced about 95% as a result of the development of a highly connected fracture network. The tensile strength of these cataclastic faults allows failure to occur by shear, tensile, and mixed-mode fracturing. This suggests that geomechanical tools used to predict trap breaching by reactivation that assume cohesionless frictional failure may significantly underestimate seal risk. Determination of fault seal risk can, therefore, be significantly enhanced by multidisciplinary research efforts combining field- and laboratory-scale geomechanical analysis with microstructural and petrophysical property description.
机译:已通过 确定了澳大利亚奥特威盆地的岩石化良好的碎裂断层岩 的破坏范围,在该断层活化作用中 具有很大的圈闭风险。 sup>三轴测试。地质力学分析表明,胶结的 分解长石具有很强的内聚强度, 的断层活化和圈闭破坏受剪切,拉伸和混合的发展 的影响。型骨折。 压裂过程的力学受晶粒强度和 催化的形态的影响。与水泥砂岩相比,在较低的压差应力条件下,胶结的cataclasites较容易发生破坏,这是由于较低的内聚力和较高的摩擦力造成的。系数。因此,裂变断层与未变形的 储层之间的地质力学性质差异可能会在重新活化过程中显着影响密封完整性。完整的凯撒石密封容量超过 2400 psi(16.5 MPa)。重新激活后,由于高度连接的裂缝网络的发展,密封能力 降低了约95%。这些碎裂 断裂的抗张强度允许通过剪切,拉伸和混合模式 断裂而发生破坏。这表明,假定无粘性的摩擦 故障而用于通过重新激活来预测 陷井破坏的地质力学工具可能会大大低估密封风险。因此,通过多学科研究工作,结合实地和实验室规模的地质力学分析与微观结构和岩石物理研究,可以大大提高对断层封闭风险的确定 属性描述。

著录项

  • 来源
    《AAPG Bulletin 》 |2002年第8期| 1383-1405| 共23页
  • 作者单位

    CSIRO Petroleum, Australian Petroleum Cooperative Research Centre, 26 Dick Perry Avenue, Kensington, Western Australia, 6151, Australia david.dewhurst@dpr.csiro.au;

    National Centre for Petroleum Geology and Geophysics, Australian Petroleum Cooperative Research Centre, University of Adelaide, Adelaide, South Australia, 5005, Australia current address: Woodside Energy Ltd., 1 Adelaide Terrace, Perth, Western Australia, 6000, Australia richard.jones@woodside.com.au;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号