首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth
【2h】

Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth

机译:解释海洋底栖无脊椎动物和深海鱼类的等深线多样性模式:对深度生物适应的生理贡献

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity–depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity–depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress–evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress–evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity–depth pattern.
机译:在深部大陆边缘的现存动物区系中,已经确定了海洋底栖无脊椎动物和沉鱼的等深线生物多样性模式。深度分区是广泛的,通过架子和斜坡动物群从架子断裂到1000 m的过渡,以及斜坡和深渊动物群在2000到3000 m的过渡,是明显的。这些过渡的特点是物种更新率高。尽管由这些深度表示的区域相对较小,但深度范围在1000至3000 m之间的单峰多样性模式。区域划分被认为是在整个远生代发生多次大规模灭绝事件后,浅水生物对深海的殖民化所致。低温和高压的影响作用于生物组织的各个层次,并且似乎足以限制此类浅水物种的分布。在实验温度下,一致地将浅水深处的静水压力确定为浅水和上层深水底栖无脊椎动物在原位温度下所能承受的最大压力,并且对于底栖无脊椎动物和沉鱼中的深水通行似乎需要适应。总之,这表明在海床深度处的高压和热生理瓶颈有助于水深区划。即使由这些深度表示的面积相对较低,单峰分集-深度模式的峰值通常也会出现在这些深度。尽管人们认识到,在较长的进化时间尺度上,浅水生物多样性模式是由物种形成驱动的,但很少考虑到对深度物种分布模式的潜在影响。分子和形态学证据表明,凉爽的深海水是深海中适应性辐射的主要场所,我们假设物种形成速率的深水变化会随时间推动单峰多样性-深度格局。已经提出了对代谢速率依赖性突变和世代时间的热效应来驱动物种形成速率的差异,从而导致现代纬度生物多样性格局随着时间的流逝。显然,由于温度通常随深度而降低,仅靠这种热机制不能解释测深图。我们假设,在海水深处显示出高静水压力和低温的生理效应,作用于侵入深海的浅水类群,可能通过增加生殖细胞的诱变活性,在胚胎或幼虫期使导管失活而引起应激进化机制。通过释放隐藏的变异或诱变活性,或通过激活或释放幼虫或成虫中的转座因子来发育。在这种情况下,在深水区的生理瓶颈处变化的增加会导致物种形成率升高。适应性增加了对高静水压力和低温的耐受性,使深渊定植并降低了应力-演化响应,因此使较深类群的物种恢复到本底速率。随着时间的流逝,这种机制可能有助于单峰多样性-深度模式。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号