首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Management and climate contributions to satellite-derived active fire trends in the contiguous United States
【2h】

Management and climate contributions to satellite-derived active fire trends in the contiguous United States

机译:管理和气候对连续美国卫星衍生主动火趋势的贡献

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001–2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001–2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems.Key Points class="enumerated" style="list-style-type:decimal">Wildland, cropland, and prescribed fires had different trends and patternsSensitivity to climate varied with fire typeIntensity of air quality regulation influenced cropland burning trends class="head no_bottom_margin" id="__sec2title">1. IntroductionFor over a century, considerable effort has been invested in systematically monitoring and managing fires in the United States, with the aim of minimizing threats to human health and property and maintaining ecosystem function and biodiversity [; ]. Although fires are now widely used as a tool in land management, they also had an important role in regulating ecosystem processes prior to extensive human settlement [; ]. Climate influences fire on multiple time scales, including by determining distributions of plant functional types and species over a period of decades to centuries [], the amount and characteristics of lightning and other ignition sources [], fuel loads and moisture [], the length of the fire season, and fire weather during individual events []. Fires, in turn, modify climate through aerosol and greenhouse gas emissions [; ; ] and by changing land surface properties [; ; ; ]. These two way climate-fire interactions create the potential for regional and global scale feedbacks, with their magnitude and sign likely varying regionally [e.g., ; href="#b63" rid="b63" class=" bibr popnode">Tosca et al., 2013]. With fires playing an important role in modifying many Earth system and ecosystem processes, an important challenge is to understand the role of management and climate in controlling contemporary changes in fire activity.Multiple fire regimes exist within the U.S. as a consequence of considerable regional variability in ecosystems, climate, and land use. Large wildfires in western U.S. forests and shrublands are dominant contributors to regional and contiguous U.S. (CONUS) burned area [href="#b34" rid="b34" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627156">Littell et al., 2009; href="#b29" rid="b29" class=" bibr popnode">Kasischke et al., 2011]. For this class of fires, interannual and decadal-scale variability is often driven by fire weather controls during summer and by cumulative winter precipitation levels over several years that influence the continuity of surface fuels [href="#b61" rid="b61" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627167">Swetnam and Betancourt, 1990; href="#b69" rid="b69" class=" bibr popnode">Westerling et al., 2003; href="#b14" rid="b14" class=" bibr popnode">Crimmins, 2006]. The use of prescribed fire in forests as a federal policy started in the 1960s, when studies showed that landscape-level changes in ecosystem composition could be attributed to fire suppression [href="#b60" rid="b60" class=" bibr popnode">Stephens and Ruth, 2005]. In cropland areas, fire is frequently applied to clear fields of crop residues and to manage pests and disease [e.g., href="#b58" rid="b58" class=" bibr popnode">Smiley et al., 1996]. As a consequence, cropland fires vary considerably among different crop types [href="#b39" rid="b39" class=" bibr popnode">McCarty et al., 2007, href="#b40" rid="b40" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627164">2009; href="#b64" rid="b64" class=" bibr popnode">Tulbure et al., 2010; href="#b33" rid="b33" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627159">Lin et al., 2012]. Prairies of the Great Plains are burned every 1–2 years to avoid woody encroachment and enhance grazing productivity [href="#b8" rid="b8" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627158">Brockway et al., 2002; href="#b57" rid="b57" class=" bibr popnode">Simmons et al., 2007; href="#b2" rid="b2" class=" bibr popnode">Allen and Palmer, 2011]. Fires are also used for ecosystem management in pine forests in the southeast; prescribed fires, usually at 2–5 year intervals, are used to prepare the site before seeding and planting, to remove logging debris, and to manage understory species [href="#b68" rid="b68" class=" bibr popnode">Waldrop et al., 1992; href="#b10" rid="b10" class=" bibr popnode">Carter and Foster, 2004].Recent changes in climate have contributed to increases in the number of large wildfires in North America, as a consequence of longer fire seasons and warmer, drier conditions during summer [href="#b25" rid="b25" class=" bibr popnode">Gillett et al., 2004; href="#b28" rid="b28" class=" bibr popnode">Kasischke and Turetsky, 2006; href="#b70" rid="b70" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627162">Westerling et al., 2006; href="#b44" rid="b44" class=" bibr popnode">Morton et al., 2013]. With expected changes in climate over the next several decades, burned area for wildfires will likely increase [href="#b59" rid="b59" class=" bibr popnode">Spracklen et al., 2009], with individual fires becoming more intense and severe [href="#b71" rid="b71" class=" bibr popnode">Westerling et al., 2011]. However, much less is known about the climate sensitivity of cropland, rangeland, and plantation fires, or the underlying mechanisms regulating these sensitivities. As a result, it is difficult to estimate how the contributions of managed fires to regional and continental-scale emissions will evolve in the future. For example, while there is evidence showing that drought events decrease the occurrence of cropland fires in Australia [href="#b33" rid="b33" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627166">Lin et al., 2012], it remains unclear if this is caused by drought-induced reductions in crop yields and thus fuel loads, or from farmers igniting fewer fires during warmer and drier periods. This is an example of a critical gap in our understanding, and one that can be partly addressed by combining analysis of satellite imagery with other spatially distributed agricultural data sets.Satellite observations of burned area and active fires (thermal anomalies) provide consistent and systematic coverage, which enables assessment of changes in cropland and prescribed fires at a continental scale [href="#b30" rid="b30" class=" bibr popnode">Korontzi et al., 2006; href="#b40" rid="b40" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627155">McCarty et al., 2009]. Satellite data are suitable for evaluating fire impacts on air quality or surface characteristics [href="#b11" rid="b11" class=" bibr popnode">Chu et al., 2003; href="#b18" rid="b18" class=" bibr popnode">Engel-Cox et al., 2004; href="#b35" rid="b35" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627165">Liu et al., 2005; href="#b46" rid="b46" class=" bibr popnode">Park et al., 2007; href="#b5" rid="b5" class=" bibr popnode">Beck et al., 2011] and complement existing state and federal reports that typically document fire statistics using the number of occurrences or area burned within a given region. While existing state and federal reporting systems provide valuable information for many wildland fires and some prescribed fires, cropland burning has not yet been specifically targeted, and thus emissions and trends for this fire type remain highly uncertain. Given this limitation, satellite observations that provide comprehensive coverage of the U.S. have the potential to improve our understanding of the relative importance of different fire types and their relationship with environmental drivers. However, an understanding of the characteristics of each satellite sensor, including spectrometer sensitivities and orbit characteristics, is needed to properly interpret these observations.Two basic approaches exist for sampling fire patterns and trends with remote sensing data. The first is to map burned area using surface reflectance imagery from pre- and post-burn periods [href="#b62" rid="b62" class=" bibr popnode">Tansey et al., 2004; href="#b24" rid="b24" class=" bibr popnode">Giglio et al., 2009]. The second is to quantify actively burning fire fronts using measurements of surface thermal anomalies [href="#b21" rid="b21" class=" bibr popnode">Giglio et al., 2003a; href="#b4" rid="b4" class=" bibr popnode">Arino et al., 2005; href="#b50" rid="b50" class=" bibr popnode">Roberts et al., 2011]. Both remote sensing data streams have strengths and weaknesses with respect to their use in quantifying fire trends at a continental scale. Burned area more immediately lends itself to computing emissions, if it can be combined with information on fuel loads and combustion completeness [href="#b56" rid="b56" class=" bibr popnode">Seiler and Crutzen, 1980]. However, most global-scale remote sensing products of burned area are derived from surface reflectance imagery with moderate resolution (∼500 m to 1 km) [e.g., href="#b53" rid="b53" class=" bibr popnode">Roy et al., 2005]. This resolution is suitable for mapping large wildfires in savannas and boreal forests but can be insufficient for tracking fires that are much smaller than the spatial resolution of an individual surface reflectance pixel—as is often the case for cropland or plantation fires and many prescribed fires [href="#b41" rid="b41" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627163">McCarty, 2011; href="#b48" rid="b48" class=" bibr popnode">Randerson et al., 2012]. Surface reflectance-based products with a higher spatial resolution, such as Landsat with a 30 m pixel size, have the advantage of capturing pre- and post-fire surface reflectance changes suitable for landscape level analysis [e.g., href="#b19" rid="b19" class=" bibr popnode">Epting and Verbyla, 2005; href="#b17" rid="b17" class=" bibr popnode">Eidenshink et al., 2007]. However, the temporal resolution of Landsat with a 16 day repeat cycle may not be suitable for capturing many cropland or plantation fires that last for a short period and are often immediately followed by other forms of land management such as plowing or harvesting. Here we chose to use the MODIS active fire (thermal anomaly) product for our analysis at a continental level, because this product can detect fire fronts that are an order of magnitude smaller than moderate resolution burned area products [href="#b22" rid="b22" class=" bibr popnode">Giglio et al., 2003b]. The higher resolution of the active fire detections is important for systematically quantifying long-term trends in agricultural and prescribed fires and for quantitatively comparing activity levels across different fire types.In this paper, our goal was to quantify trends in satellite-derived time series of active fires as a function of fire type. The satellite observations we used from MODIS provide a statistical sampling (“daily snapshot”) of the distribution of fire thermal anomalies across the landscape. We divided these MODIS observations for the contiguous U.S. into three classes according to fire type based on a combination of remote sensing burned area and land cover products. The three fire types were large wildland fires, cropland fires, and prescribed/other fires. Although past work provides evidence for strong climate control on wildfires, less is known about relationships with climate for cropland and prescribed/other fires. We hypothesized that climate control of the latter two fire types was weaker than for large wildland fires, as a result of land managers regulating patterns of ignition. Our analysis identified differences in the response of several fire types to climate, thus providing information that is needed for the design of efficient fire management policies that account for projected climate changes during the next few decades. Finally, for cropland fires, we analyzed how long-term trends may respond to differences in the intensity of air quality policies enacted by different states. We hypothesized that states with stronger air quality regulation would have smaller increases (or greater reductions) in cropland fires over the past decade compared to states with fewer controls.
机译:在美国,农田,人工林和牧场的火灾是造成火灾排放的重要原因,但在开发清单或估算对气候变化的反应时,通常会被荒地火灾所掩盖。在此,我们对2001-2010年间美国连续性活动中火种(热异常)的Terra中分辨率成像光谱仪(MODIS)观测值的十年趋势,年际变化和季节性进行了量化。我们使用了“烧伤严重性监测趋势”数据库来识别大型野火和周边土地覆盖图中的活动性火灾,以识别农田中的活动性火灾。按规定/其他定义的第三类火灾包括所有剩余的卫星活动火灾探测。在这三种火灾中,大型野火是变化最大的,在美国连续的2001-2010年期间,没有明显的年度趋势。相反,农田的活跃火灾以每年3.4%的速度增长。农田和规定/其他火灾类型的总和占美国境内主动火灾总数的77%,在南部和东南部最为丰富。在西部,农田积极性火灾以每年5.9%的速度下降,这可能是由于采取了严格的空气质量政策。潜在蒸发是大型野火的年际变化的主要调节因子,但对其他两种火灾的影响较小。我们的分析表明,有可能通过影响火灾在有管理的生态系统中的使用方式来修改美国境内的景观火排放。要点 class =“ enumerated” style =“ list-style-type:decimal”> <!- -list-behavior =枚举前缀-word = mark-type =十进制最大标签大小= 0-> 荒地,农田和明火具有不同的趋势和模式 对气候的敏感性 空气质量调节强度对农田燃烧趋势的影响 class =“ head no_bottom_margin” id =“ __ sec2title”> 1。引言一个多世纪以来,美国在系统地监视和管理火灾方面投入了大量精力,旨在最大程度地减少对人类健康和财产的威胁并维持生态系统功能和生物多样性。 ]。尽管大火现在已广泛用作土地管理的工具,但大火在人类大规模定居之前在调节生态系统过程中也发挥着重要作用[; ]。气候会在多个时间尺度上影响火势,包括确定几十至几百年间植物功能类型和物种的分布[],闪电和其他点火源的数量和特征[],燃料负荷和水分[],长度火灾季节以及个别事件期间的火灾天气[]。火灾继而通过气溶胶和温室气体排放来改变气候[; ;并通过更改土地表面特性[; ; ; ]。这两种方式的气候-火交互作用为区域和全球规模的反馈创造了潜力,其幅度和符号可能会因地区而异[e.g. href="#b63" rid="b63" class=" bibr popnode"> Tosca等人,2013 ]。由于火灾在改变许多地球系统和生态系统过程中起着重要作用,因此一项重要的挑战是要了解管理和气候在控制当代火灾活动变化中的作用。由于存在很大的区域差异,美国内部存在多种火灾情况。生态系统,气候和土地利用。美国西部森林和灌木丛中的大规模野火是造成区域性和连续性美国(CONUS)烧毁地区的主要原因[href="#b34" rid="b34" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627156">等,2009 ; href="#b29" rid="b29" class=" bibr popnode"> Kasischke等,2011 ]。对于此类火灾,年际和年代际尺度的变化通常是由夏季火灾天气控制和几年来累积的冬季降水水平(影响地面燃料的连续性)驱动的[href =“#b61” rid =“ b61 “ class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_463627167”>越南和贝当古,1990年; href="#b69" rid="b69" class=" bibr popnode"> Westerling等,2003 ; href="#b14" rid="b14" class=" bibr popnode">犯罪分子,2006年]。 1960年代开始在森林中使用处方火作为联邦政策,当时研究表明,生态系统组成的景观水平变化可归因于灭火[href =“#b60” rid =“ b60” class =“ bibr popnode“> Stephens和Ruth,2005 ]。在农田地区,大火经常被用来清理农作物残留物并控制病虫害[例如,href="#b58" rid="b58" class=" bibr popnode"> Smiley等,1996 < / a>]。作为结果,不同类型的农作物之间的农田火灾差异很大。[href="#b39" rid="b39" class=" bibr popnode"> McCarty et al。,2007 ,href =“#b40” rid =“ b40” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_463627164”> 2009 ; href="#b64" rid="b64" class=" bibr popnode"> Tulbure等人,2010 ; href="#b33" rid="b33" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627159"> Lin等人,2012 ]。大平原的草原每1-2年被焚烧一次,以避免木本性的侵占并提高放牧的生产力。[href="#b8" rid="b8" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627158"> Brockway等等,2002年; href="#b57" rid="b57" class=" bibr popnode"> Simmons等,2007 ; href="#b2" rid="b2" class=" bibr popnode">艾伦和帕尔默,2011年]。火灾还被用于东南部松树林中的生态系统管理。规定的大火,通常间隔2-5年,用于播种和播种前准备场地,清除伐木碎片并管理林下物种[href =“#b68” rid =“ b68” class =“ bibr popnode“> Waldrop等,1992 ; href="#b10" rid="b10" class=" bibr popnode"> Carter and Foster,2004 ]。最近的气候变化导致北美大面积野火的增加,例如火灾季节更长,夏季气候更加干燥的结果[href="#b25" rid="b25" class=" bibr popnode"> Gillett等人,,2004 ; href="#b28" rid="b28" class=" bibr popnode"> Kasischke and Turetsky ,2006 ; href="#b70" rid="b70" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627162"> Westerling等人,,2006 ; href="#b44" rid="b44" class=" bibr popnode"> Morton等人,,2013 ]。随着未来几十年气候的预期变化,山火燃烧面积可能会增加[href="#b59" rid="b59" class=" bibr popnode"> Spracklen等。 ,2009 ],而个别大火变得更加强烈和严重[href="#b71" rid="b71" class=" bibr popnode"> 韦斯特林等人,,2011年]。但是,对农田,牧场和人工林的气候敏感性或调节这些敏感性的潜在机制知之甚少。结果,很难估计未来有管理的火灾对区域和大陆规模排放的贡献将如何演变。例如,虽然有证据表明干旱事件减少了澳大利亚的农田火灾的发生[href="#b33" rid="b33" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627166"> Lin等人,,2012 ],目前尚不清楚这是由干旱导致的农作物减产和燃料负荷下降,还是由农民在较暖和较干燥的时期点火较少而引起的。这是我们理解中一个重大缺口的例子,可以通过结合卫星图像分析和其他空间分布的农业数据集来部分解决。燃烧区域和活跃火灾(热异常)的卫星观测结果提供了一致且系统的覆盖范围,它可以评估大陆规模的农田变化和规定的火灾[href="#b30" rid="b30" class=" bibr popnode"> Korontzi等人,,2006 < / a>; href="#b40" rid="b40" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627155"> McCarty等人,,2009 ]。卫星数据适合评估火灾对空气质量或表面特征的影响[href="#b11" rid="b11" class=" bibr popnode"> Chu等人,,2003 ; href="#b18" rid="b18" class=" bibr popnode"> Engel-Cox等人,,2004 ; href="#b35" rid="b35" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627165"> Liu等人,,2005 ; href="#b46" rid="b46" class=" bibr popnode"> Park等人,2007 ; href="#b5" rid="b5" class=" bibr popnode"> 贝克等人,,2011 ],并补充了通常记录火灾统计数据的现有州和联邦报告使用给定区域内发生的次数或燃烧的面积。尽管现有的州和联邦报告系统为许多野火和某些规定的火提供了有价值的信息,但尚未专门针对农田燃烧,因此,这种火的排放和趋势仍然非常不确定。由于存在这种局限性,可以对美国进行全面报道的卫星观测有可能增进我们对不同火种的相对重要性及其与环境驱动因素之间关系的了解。但是,要了解每个卫星传感器的特性,包括光谱仪的灵敏度和轨道特性为了正确解释这些观察结果,需要两种基本方法来利用遥感数据对火势和趋势进行采样。第一种方法是使用燃烧前和燃烧后时期的表面反射率图像绘制燃烧区域图[href="#b62" rid="b62" class=" bibr popnode"> Tansey等人。,2004 ; href="#b24" rid="b24" class=" bibr popnode"> Giglio等人,,2009 ]。第二种方法是使用表面热异常的测量来量化主动燃烧的火锋。[href="#b21" rid="b21" class=" bibr popnode"> Giglio等人,,2003a < / a>; href="#b4" rid="b4" class=" bibr popnode"> Arino等人,2005 ; href="#b50" rid="b50" class=" bibr popnode"> Roberts等,,2011 ]。两种遥感数据流在量化大陆范围的火灾趋势方面都有优势和劣势。如果可以将燃烧面积与燃料负荷和燃烧完整性的信息结合起来,那么燃烧面积将更适合计算排放量[href="#b56" rid="b56" class=" bibr popnode"> Seiler and Crutzen ,1980 ]。但是,大多数全球烧伤地区的遥感产品都来自具有中等分辨率(约500 m至1 km)的表面反射率影像[例如,href =“#b53” rid =“ b53” class =“ bibr popnode “> Roy等人,,2005 ]。此分辨率适用于绘制热带草原和北方森林的大型野火,但不足以跟踪比单个表面反射像素的空间分辨率小得多的火灾(通常是农田火灾或人工林火灾以及许多规定的火灾[ href="#b41" rid="b41" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_463627163"> 麦卡蒂,2011 ; href="#b48" rid="b48" class=" bibr popnode"> Randerson等人,,2012 ]。具有较高空间分辨率的基于表面反射率的产品(例如,像素尺寸为30μm的Landsat)具有捕获火灾前和火灾后表面反射率变化的优势,适用于景观水平分析[例如,href =“#b19 “ rid =” b19“ class =” bibr popnode“> Epting and Verbyla ,2005 ; href="#b17" rid="b17" class=" bibr popnode"> Eidenshink等人,2007 ]。但是,具有16个工作日重复周期的Landsat的时间分辨率可能不适合捕获持续很短时间的许多农田或种植园大火,并且通常紧随其后的是其他形式的土地管理,例如耕作或收割。在这里,我们选择在大陆一级使用MODIS主动火灾(热异常)产品进行分析,因为该产品可以检测到比中分辨率燃烧区域产品小一个数量级的火锋[href =“#b22 “ rid =” b22“ class =” bibr popnode“> Giglio等人,2003b ]。主动火灾探测的更高分辨率对于系统地量化农业火灾和指定火灾的长期趋势以及定量比较不同火灾类型的活动水平非常重要。本文的目的是量化卫星衍生时间序列的趋势。主动射击是射击类型的函数。我们从MODIS使用的卫星观测数据提供了整个景观中火热异常分布的统计采样(“每日快照”)。我们根据遥感燃烧区域和土地覆盖产品的组合,根据火灾类型将针对连续美国的MODIS观测分为三类。三种火灾类型分别是大型荒地火灾,农田火灾和处方/其他火灾。尽管过去的工作为加强对野火的气候控制提供了证据,但对于农田和规定的/其他火灾与气候的关系知之甚少。我们假设,由于土地管理人员调节着火方式,后两种火灾的气候控制能力不如大型野火。我们的分析确定了几种火类型对气候的响应差异,从而为设计有效的火管理策略提供了所需的信息,这些政策考虑了未来几十年的预计气候变化。最后,对于农田火灾,我们分析了长期趋势如何应对不同州制定的空气质量政策强度的差异。我们假设,与控制较少的州相比,在过去十年中,空气质量法规得到加强的州在农田火灾方面的增加(或减少)幅度较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号