首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight
【2h】

Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight

机译:识别EISCAT非相干散射雷达沿同一视线检测到的等离子体结构产生的GPS信号上的闪烁信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co‐aligned GPS radio link. Large‐scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large‐scale structures did not cascade into smaller‐scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large‐scale to small‐scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.
机译:电离层闪烁源于电磁波通过等离子体密度分布中空间梯度的散射,并在给定的传播方向上漂移。电离层闪烁通过降低卫星电信和导航系统及服务(例如,欧洲对地静止导航覆盖服务,EGNOS)的可靠性和连续性,代表了不利的空间天气状况的破坏性表现。这里提出的实验的目的是确定极光电离结构对GPS闪烁的贡献。欧洲不相干散射(EISCAT)测量是沿着从特罗姆瑟观察到的给定GPS卫星的同一视线获得的,然后借助EISCAT UHF雷达来确定因果关系,从而识别出在同向GPS无线电链路上引起闪烁的等离子体结构。实际上,与电离层波谷的极向边缘相关联的大型结构,夜间极光椭圆中的极光弧以及亚暴暴发时的粒子沉淀确实被认为是造成L波段相位闪烁增强的原因。首次观察到,观察到的大型结构没有级联为较小规模的结构,从而导致了没有振幅闪烁的增强的相位闪烁。需要更多的测量方法和理论来理解抑制大规模到小规模能量级联的机理并重现观察结果。该方面对于建模通过这些电离结构传播的无线电波的散射至关重要。这个实验的新见解可以更好地描述太空天气可能对卫星电信和导航服务的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号