首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Ion current and action potential alterations in peripheral neurons subject to uniaxial strain
【2h】

Ion current and action potential alterations in peripheral neurons subject to uniaxial strain

机译:单轴应变对周围神经元离子电流和动作电位的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Peripheral nerves, subject to continuous elongation and compression during everyday movement, contain neuron fibers vital for movement and sensation. At supraphysiological strains resulting from trauma, chronic conditions, aberrant limb positioning, or surgery, conduction blocks occur which may result in chronic or temporary loss of function. Previous in vitro stretch models, mainly focused on traumatic brain injury modelling, have demonstrated altered electrophysiological behavior during localized deformation applied by pipette suction. Our aim was to evaluate the changes in voltage‐activated ion channel function during uniaxial straining of neurons applied by whole‐cell deformation, more physiologically relevant model of peripheral nerve trauma. Here, we quantified experimentally the changes in inwards and outwards ion currents and action potential (AP) firing in dorsal root ganglion‐derived neurons subject to uniaxial strains, using a custom‐built device allowing simultaneous cell deformation and patch clamp recording. Peak inwards sodium currents and rectifying potassium current magnitudes were found to decrease in cells under stretch, channel reversal potentials were found to be left‐shifted, and half‐maximum activation potentials right‐shifted. The threshold for AP firing was increased in stretched cells, although neurons retained the ability to fire induced APs. Overall, these results point to ion channels being damaged directly and immediately by uniaxial strain, affecting cell electrophysiological activity, and can help develop prevention and treatment strategies for peripheral neuropathies caused by mechanical trauma.
机译:周围神经在日常运动中会受到持续的拉伸和压缩,其中含有对运动和感觉至关重要的神经元纤维。在因外伤,慢性病,肢体畸形或手术引起的生理超负荷下,会出现传导阻滞,这可能导致慢性或暂时性的功能丧失。以前的体外拉伸模型(主要侧重于创伤性脑损伤建模)已经证明在通过移液管抽吸施加的局部变形过程中,电生理行为发生了改变。我们的目的是评估由全细胞变形施加的神经元的单轴拉伸过程中电压激活的离子通道功能的变化,这是与周围神经损伤更为生理相关的模型。在这里,我们使用定制的设备同时进行细胞变形和膜片钳记录,通过实验量化了受单轴应变作用的背根神经节衍生神经元内向和向外离子电流和动作电位(AP)放电的变化。发现拉伸状态下细胞的内向钠电流峰值和整流钾电流幅度减小,通道反转电位被左移,最大激活电位被右移。尽管神经元保留了发射诱导的AP的能力,但在拉伸细胞中AP发射的阈值却增加了。总的来说,这些结果表明离子通道被单轴应变直接和立即损坏,影响细胞的电生理活性,并且可以帮助制定针对机械性创伤引起的周围神经病的预防和治疗策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号