首页> 美国卫生研究院文献>Springer Open Choice >The relationships between message passing pairwise Kermack–McKendrick and stochastic SIR epidemic models
【2h】

The relationships between message passing pairwise Kermack–McKendrick and stochastic SIR epidemic models

机译:消息传递成对Kermack-McKendrick和随机SIR流行模型之间的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider a very general stochastic model for an SIR epidemic on a network which allows an individual’s infectious period, and the time it takes to contact each of its neighbours after becoming infected, to be correlated. We write down the message passing system of equations for this model and prove, for the first time, that it has a unique feasible solution. We also generalise an earlier result by proving that this solution provides a rigorous upper bound for the expected epidemic size (cumulative number of infection events) at any fixed time t  0. We specialise these results to a homogeneous special case where the graph (network) is symmetric. The message passing system here reduces to just four equations. We prove that cycles in the network inhibit the spread of infection, and derive important epidemiological results concerning the final epidemic size and threshold behaviour for a major outbreak. For Poisson contact processes, this message passing system is equivalent to a non-Markovian pair approximation model, which we show has well-known pairwise models as special cases. We show further that a sequence of message passing systems, starting with the homogeneous one just described, converges to the deterministic Kermack–McKendrick equations for this stochastic model. For Poisson contact and recovery, we show that this convergence is monotone, from which it follows that the message passing system (and hence also the pairwise model) here provides a better approximation to the expected epidemic size at time t  0 than the Kermack–McKendrick model.
机译:我们考虑了网络上SIR流行病的一种非常通用的随机模型,该模型可以使一个人的传染期以及被感染后与每个邻居联系所花费的时间相互关联。我们写下该模型的消息传递系统方程式,并首次证明它具有唯一可行的解​​决方案。我们还通过证明该解决方案在任何固定时间t> 0上为预期的流行病规模(感染事件的累积数量)提供了严格的上限,来推广更早的结果。我们将这些结果专门用于图(网络)的同质特殊情况)是对称的。这里的消息传递系统简化为四个方程。我们证明网络中的周期会抑制感染的传播,并得出有关主要流行的最终流行规模和阈值行为的重要流行病学结果。对于Poisson接触过程,此消息传递系统等效于非马尔可夫对近似模型,我们将其作为特例展示了众所周知的成对模型。我们进一步展示了一系列消息传递系统,从刚刚描述的同类系统开始,收敛到该随机模型的确定性Kermack-McKendrick方程。对于Poisson接触与恢复,我们表明这种收敛是单调的,由此可以得出,消息传递系统(因此也是成对模型)在此处的t> 0时刻比Kermack-更好地近似了预期的流行病规模。麦肯德里克模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号