首页> 美国卫生研究院文献>Springer Open Choice >Experimental Control of Turbulent Boundary Layers with In-plane Travelling Waves
【2h】

Experimental Control of Turbulent Boundary Layers with In-plane Travelling Waves

机译:面内行波湍流边界层的实验控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The experimental control of turbulent boundary layers using streamwise travelling waves of spanwise wall velocity, produced using a novel active surface, is outlined in this paper. The innovative surface comprises a pneumatically actuated compliant structure based on the kagome lattice geometry, supporting a pre-tensioned membrane skin. Careful design of the structure enables waves of variable length and speed to be produced in the flat surface in a robust and repeatable way, at frequencies and amplitudes known to have a favourable influence on the boundary layer. Two surfaces were developed, a preliminary module extending 152 mm in the streamwise direction, and a longer one with a fetch of 2.9 m so that the boundary layer can adjust to the new surface condition imposed by the forcing. With a shorter, 1.5 m portion of the surface actuated, generating an upstream-travelling wave, a drag reduction of 21.5% was recorded in the boundary layer with Reτ = 1125. At the same flow conditions, a downstream-travelling produced a much smaller drag reduction of 2.6%, agreeing with the observed trends in current simulations. The drag reduction was determined with constant temperature hot-wire measurements of the mean velocity gradient in the viscous sublayer, while simultaneous laser Doppler vibrometer measurements of the surface recorded the wall motion. Despite the mechanics of the dynamic surface resulting in some out-of-plane motion (which is small in comparison to the in-plane streamwise movement), the positive drag reduction results are encouraging for future investigations at higher Reynolds numbers.
机译:本文概述了利用新型活动表面产生的沿展向壁速度的沿流传播波进行湍流边界层的实验控制。创新的表面包括基于kagome晶格几何形状的气动顺应结构,支撑了预张紧的膜皮。精心设计的结构能够以稳定且可重复的方式,在平坦表面上以已知对边界层产生有利影响的频率和振幅产生可变长度和速度的波。开发了两个表面,一个初步模块沿流向延伸152 mm,一个更长的模块读取2.9 m,以便边界层可以适应强迫施加的新表面条件。在较短的1.5 m的表面被激活的情况下,产生了上游游动波,在Reτ= 1125的边界层记录了21.5%的阻力减小。在相同的流动条件下,下游游动产生的阻力小得多阻力减少了2.6%,与当前模拟中观察到的趋势一致。减阻作用是通过对粘性子层中平均速度梯度进行恒温热线测量来确定的,而同时通过激光多普勒振动仪对表面的测量则记录了壁的运动。尽管动态表面的力学导致了一些平面外运动(与平面内流向运动相比较小),但积极的减阻效果令人鼓舞,这对于将来在更高的雷诺数下进行研究是令人鼓舞的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号