首页> 美国卫生研究院文献>Springer Open Choice >Perspective: next generation isotope-aided methods for protein NMR spectroscopy
【2h】

Perspective: next generation isotope-aided methods for protein NMR spectroscopy

机译:透视图:下一代同位素辅助的蛋白质NMR光谱分析方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this perspective, we describe our efforts to innovate the current isotope-aided NMR methodology to investigate biologically important large proteins and protein complexes, for which only limited structural information could be obtained by conventional NMR approaches. At the present time, it is widely believed that only backbone amide and methyl signals are amenable for investigating such difficult targets. Therefore, our primary mission is to disseminate our novel knowledge within the biological NMR community; specifically, that any type of NMR signals other than methyl and amide groups can be obtained, even for quite large proteins, by optimizing the transverse relaxation properties by isotope labeling methods. The idea of “TROSY by isotope labeling” has been cultivated through our endeavors aiming to improve the original stereo-array isotope labeling (SAIL) method (Kainosho et al., Nature 440:52–57, 2006). The SAIL TROSY methods subsequently culminated in the successful observations of individual NMR signals for the side-chain aliphatic and aromatic 13CH groups in large proteins, as exemplified by the 82 kDa single domain protein, malate synthase G. Meanwhile, the expected role of NMR spectroscopy in the emerging integrative structural biology has been rapidly shifting, from structure determination to the acquisition of biologically relevant structural dynamics, which are poorly accessible by X-ray crystallography or cryo-electron microscopy. Therefore, the newly accessible NMR probes, in addition to the methyl and amide signals, will open up a new horizon for investigating difficult protein targets, such as membrane proteins and supramolecular complexes, by NMR spectroscopy. We briefly introduce our latest results, showing that the protons attached to 12C-atoms give profoundly narrow 1H-NMR signals even for large proteins, by isolating them from the other protons using the selective deuteration. The direct 1H observation methods exhibit the highest sensitivities, as compared to heteronuclear multidimensional spectroscopy, in which the 1H-signals are acquired via the spin-coupled 13C- and/or 15N-nuclei. Although the selective deuteration method was launched a half century ago, as the first milestone in the following prosperous history of isotope-aided NMR methods, our results strongly imply that the low-dimensional 1H-direct observation NMR methods should be revitalized in the coming era, featuring ultrahigh-field spectrometers beyond 1 GHz.
机译:从这个角度出发,我们描述了我们为创新当前的同位素辅助NMR方法以研究生物学上重要的大蛋白和蛋白复合物而进行的努力,而常规NMR方法只能获得有限的结构信息。目前,广泛认为只有骨架酰胺和甲基信号才适合研究这种困难的靶标。因此,我们的主要任务是在生物NMR社区中传播我们的新颖知识。具体而言,即使是相当大的蛋白质,也可以通过同位素标记法优化横向弛豫特性来获得除甲基和酰胺基团以外的任何类型的NMR信号。通过我们旨在改善原始立体阵列同位素标记(SAIL)方法的努力,已经树立了“通过同位素标记进行TROSY”的思想(Kainosho等人,Nature 440:52-57,2006)。 SAIL TROSY方法随后成功地观察到了大蛋白中侧链脂族和芳族 13 CH基团的单个NMR信号的成功观察,例如82 kDa单结构域蛋白苹果酸合酶G.同时,核磁共振波谱学在新兴的整合结构生物学中的预期作用已从结构确定迅速转移到生物学相关的结构动力学的获取,而这是X射线晶体学或低温电子显微镜难以获得的。因此,除了甲基和酰胺信号外,新近获得的NMR探针还将为通过NMR光谱法研究困难的蛋白质靶标(例如膜蛋白和超分子复合物)开辟新的领域。我们简要介绍了我们的最新结果,表明与 12 C原子相连的质子甚至通过分离大分子蛋白质,也能给出非常窄的 1 H-NMR信号。质子采用选择性氘化。与 1 H信号通过自旋耦合 13获取的异核多维光谱相比,直接 1 H观测方法具有最高的灵敏度。 C-和/或 15 N核。尽管选择性氘化方法是半个世纪前提出的,但它是随后的同位素辅助NMR方法发展史上的第一个里程碑,但我们的结果强烈暗示了低维 1 H直接观测NMR在未来的时代,应重振这些方法,其特点是具有超过1 GHz的超高光谱仪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号