首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase
【2h】

Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase

机译:同位素特异性和氨基酸特异性重原子取代改变人嘌呤核苷磷酸化酶中的屏障穿越

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational chemistry predicts that atomic motions on the femtosecond timescale are coupled to transition-state formation (barrier-crossing) in human purine nucleoside phosphorylase (PNP). The prediction is experimentally supported by slowed catalytic site chemistry in isotopically labeled PNP (13C, 15N, and 2H). However, other explanations are possible, including altered volume or bond polarization from carbon-deuterium bonds or propagation of the femtosecond bond motions into slower (nanoseconds to milliseconds) motions of the larger protein architecture to alter catalytic site chemistry. We address these possibilities by analysis of chemistry rates in isotope-specific labeled PNPs. Catalytic site chemistry was slowed for both [2H]PNP and [13C, 15N]PNP in proportion to their altered protein masses. Secondary effects emanating from carbon–deuterium bond properties can therefore be eliminated. Heavy-enzyme mass effects were probed for local or global contributions to catalytic site chemistry by generating [15N, 2H]His8-PNP. Of the eight His per subunit, three participate in contacts to the bound reactants and five are remote from the catalytic sites. [15N, 2H]His8-PNP had reduced catalytic site chemistry larger than proportional to the enzymatic mass difference. Altered barrier crossing when only His are heavy supports local catalytic site femtosecond perturbations coupled to transition-state formation. Isotope-specific and amino acid specific labels extend the use of heavy enzyme methods to distinguish global from local isotope effects.
机译:计算化学预测飞秒时标上的原子运动与人嘌呤核苷磷酸化酶(PNP)中的过渡态形成(壁垒穿越)相关。在同位素标记的PNP( 13 C, 15 N和 2 H)中,催化位点化学的放慢在实验上支持了这一预测。但是,其他解释也是可能的,包括碳-氘键的体积或键极化改变或飞秒键运动传播到较大蛋白质结构的较慢(纳秒到毫秒)运动以改变催化位点化学反应。我们通过分析同位素特异性标记的PNP中的化学速率来解决这些可能性。 [ 2 H] PNP和[ 13 C, 15 N] PNP的催化位点化学反应均与蛋白质质量改变成比例。因此,可以消除由碳-氘键性质引起的次级影响。通过产生[ 15 N, 2 H] His8-PNP,探索了重酶质量效应对催化部位化学的局部或整体贡献。每个亚基八个His中,三个参与与结合的反应物的接触,五个远离催化位点。 [ 15 N, 2 H] His8-PNP降低的催化位点化学反应大于与酶促质量差异成比例的反应。当只有His很重时,改变的势垒穿越会支持与过渡态形成相关的局部催化位飞秒扰动。同位素特异性和氨基酸特异性标记扩展了重酶方法的使用范围,以区分全局同位素和局部同位素效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号