首页> 美国卫生研究院文献>PLoS Clinical Trials >Plant biomass and soil organic carbon are main factors influencing dry-season ecosystem carbon rates in the coastal zone of the Yellow River Delta
【2h】

Plant biomass and soil organic carbon are main factors influencing dry-season ecosystem carbon rates in the coastal zone of the Yellow River Delta

机译:黄河三角洲沿海地区植物生物量和土壤有机碳是影响旱季生态系统碳速率的主要因素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Coastal wetlands are considered as a significant sink of global carbon due to their tremendous organic carbon storage. Coastal CO2 and CH4 flux rates play an important role in regulating atmospheric CO2 and CH4 concentrations. However, the relative contributions of vegetation, soil properties, and spatial structure on dry-season ecosystem carbon (C) rates (net ecosystem CO2 exchange, NEE; ecosystem respiration, ER; gross ecosystem productivity, GEP; and CH4) remain unclear at a regional scale. Here, we compared dry-season ecosystem C rates, plant, and soil properties across three vegetation types from 13 locations at a regional scale in the Yellow River Delta (YRD). The results showed that the Phragmites australis stand had the greatest NEE (-1365.4 μmol m-2 s-1), ER (660.2 μmol m-2 s-1), GEP (-2025.5 μmol m-2 s-1) and acted as a CH4 source (0.27 μmol m-2 s-1), whereas the Suaeda heteroptera and Tamarix chinensis stands uptook CH4 (-0.02 to -0.12 μmol m-2 s-1). Stepwise multiple regression analysis demonstrated that plant biomass was the main factor explaining all of the investigated carbon rates (GEP, ER, NEE, and CH4); while soil organic carbon was shown to be the most important for explaining the variability in the processes of carbon release to the atmosphere, i.e., ER and CH4. Variation partitioning results showed that vegetation and soil properties played equally important roles in shaping the pattern of C rates in the YRD. These results provide a better understanding of the link between ecosystem C rates and environmental drivers, and provide a framework to predict regional-scale ecosystem C fluxes under future climate change.
机译:沿海湿地由于其巨大的有机碳存储而被认为是全球碳的重要汇。沿海的CO2和CH4通量率在调节大气中的CO2和CH4浓度方面起着重要作用。然而,目前尚不清楚植被,土壤性质和空间结构对旱季生态系统碳(C)速率(净生态系统CO2交换,NEE;生态系统呼吸,ER;生态系统总生产力,GEP和CH4)的相对贡献。区域规模。在这里,我们比较了黄河三角洲(YRD)13个地区的三种植被类型的旱季生态系统C速率,植物和土壤特性。结果表明,芦苇林分的NEE最大(-1365.4μmolm -2 s -1 ),ER最大,为660.2μmolm -2 s -1 ),GEP(-2025.5μmolm -2 s -1 )并作为CH4源(0.27μmolm -2 s -1 ),而Suaeda heteroptera和Tamarix chinensis吸收CH4(-0.02至-0.12μmolm -2 s < sup> -1 )。逐步多元回归分析表明,植物生物量是解释所有研究的碳速率(GEP,ER,NEE和CH4)的主要因素。而土壤有机碳对于解释向大气释放碳的过程(即ER和CH4)的可变性最重要。变异划分结果表明,植被和土壤特性在塑造长三角地区碳速率模式方面起着同等重要的作用。这些结果可以更好地理解生态系统碳速率与环境驱动因素之间的联系,并提供一个框架来预测未来气候变化下区域尺度的生态系统碳通量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号