首页> 美国卫生研究院文献>PLoS Clinical Trials >Optimizing the alignment of thermoresponsive poly(N-isopropyl acrylamide) electrospun nanofibers for tissue engineering applications: A factorial design of experiments approach
【2h】

Optimizing the alignment of thermoresponsive poly(N-isopropyl acrylamide) electrospun nanofibers for tissue engineering applications: A factorial design of experiments approach

机译:优化用于组织工程应用的热敏性聚(N-异丙基丙烯酰胺)电纺纳米纤维的排列:实验方法的因子设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thermoresponsive polymers, such as poly(N-isopropyl acrylamide) (PNIPAM), have been identified and used as cell culture substrates, taking advantage of the polymer’s lower critical solution temperature (LCST) to mechanically harvest cells. This technology bypasses the use of biochemical enzymes that cleave important cell-cell and cell-matrix interactions. In this study, the process of electrospinning is used to fabricate and characterize aligned PNIPAM nanofiber scaffolds that are biocompatible and thermoresponsive. Nanofiber scaffolds produced by electrospinning possess a 3D architecture that mimics native extracellular matrix, providing physical and chemical cues to drive cell function and phenotype. We present a factorial design of experiments (DOE) approach to systematically determine the effects of different electrospinning process parameters on PNIPAM nanofiber diameter and alignment. Results show that high molecular weight PNIPAM can be successfully electrospun into both random and uniaxially aligned nanofiber mats with similar fiber diameters by simply altering the speed of the rotating mandrel collector from 10,000 to 33,000 RPM. PNIPAM nanofibers were crosslinked with OpePOSS, which was verified using FTIR. The mechanical properties of the scaffolds were characterized using dynamic mechanical analysis, revealing an order of magnitude difference in storage modulus (MPa) between cured and uncured samples. In summary, cross-linked PNIPAM nanofiber scaffolds were determined to be stable in aqueous culture, biocompatible, and thermoresponsive, enabling their use in diverse cell culture applications.
机译:利用聚合物的较低临界溶液温度(LCST),可以鉴定出诸如聚N-异丙基丙烯酰胺(PNIPAM)之类的热响应性聚合物,并将其用作细胞培养底物。这项技术绕过了会裂解重要的细胞-细胞和细胞-基质相互作用的生化酶的使用。在这项研究中,静电纺丝的过程被用来制造和表征生物相容性和热响应性的对齐的PNIPAM纳米纤维支架。通过静电纺丝生产的纳米纤维支架具有模仿天然细胞外基质的3D结构,可提供物理和化学线索来驱动细胞功能和表型。我们提出了一种析因设计实验(DOE)方法,以系统地确定不同静电纺丝工艺参数对PNIPAM纳米纤维直径和排列的影响。结果表明,只需将旋转心轴收集器的速度从10,000 RPM更改为33,000 RPM,就可以将高分子量PNIPAM成功地静电纺成具有相似纤维直径的无规和单轴排列的纳米纤维毡。 PNIPAM纳米纤维与OpePOSS交联,这已通过FTIR进行了验证。支架的力学性能使用动态力学分析进行了表征,揭示了固化和未固化样品之间的储能模量(MPa)的数量级差异。总之,已确定交联的PNIPAM纳米纤维支架在水培养中是稳定的,生物相容性和热响应性的,从而使其可用于多种细胞培养应用中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号