首页> 美国卫生研究院文献>PLoS Clinical Trials >On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study
【2h】

On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study

机译:关于新一代磁力计用于MEG的潜力:波束形成器仿真研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetoencephalography (MEG) is a sophisticated tool which yields rich information on the spatial, spectral and temporal signatures of human brain function. Despite unique potential, MEG is limited by a low signal-to-noise ratio (SNR) which is caused by both the inherently small magnetic fields generated by the brain, and the scalp-to-sensor distance. The latter is limited in current systems due to a requirement for pickup coils to be cryogenically cooled. Recent work suggests that optically-pumped magnetometers (OPMs) might be a viable alternative to superconducting detectors for MEG measurement. They have the advantage that sensors can be brought to within ~4 mm of the scalp, thus offering increased sensitivity. Here, using simulations, we quantify the advantages of hypothetical OPM systems in terms of sensitivity, reconstruction accuracy and spatial resolution. Our results show that a multi-channel whole-head OPM system offers (on average) a fivefold improvement in sensitivity for an adult brain, as well as clear improvements in reconstruction accuracy and spatial resolution. However, we also show that such improvements depend critically on accurate forward models; indeed, the reconstruction accuracy of our simulated OPM system only outperformed that of a simulated superconducting system in cases where forward field error was less than 5%. Overall, our results imply that the realisation of a viable whole-head multi-channel OPM system could generate a step change in the utility of MEG as a means to assess brain electrophysiological activity in health and disease. However in practice, this will require both improved hardware and modelling algorithms.
机译:脑磁图(MEG)是一种复杂的工具,可产生有关人脑功能的空间,光谱和时间特征的丰富信息。尽管具有独特的潜力,但MEG仍然受到低信噪比(SNR)的限制,该信噪比是由大脑产生的固有小磁场以及头皮到传感器的距离引起的。由于要求将拾取线圈进行低温冷却,后者在当前系统中受到限制。最近的工作表明,光泵磁力计(OPM)可能是用于MEG测量的超导探测器的可行替代方案。它们的优势是可以将传感器带到头皮的约4毫米以内,从而提供更高的灵敏度。在这里,我们使用模拟方法来量化假设的OPM系统在灵敏度,重建精度和空间分辨率方面的优势。我们的结果表明,多通道全头OPM系统对成人大脑的灵敏度平均提高了五倍,并且在重建精度和空间分辨率方面也有了明显提高。但是,我们还表明,这种改进严重取决于准确的正向模型;实际上,在前向场误差小于5%的情况下,我们的模拟OPM系统的重建精度仅优于模拟超导系统。总体而言,我们的结果表明,可行的全头多通道OPM系统的实现可能会产生MEG实用性的逐步变化,而MEG则是评估健康和疾病中脑电生理活动的一种手段。但是实际上,这将需要改进的硬件和建模算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号