首页> 美国卫生研究院文献>PLoS Clinical Trials >A Model of Proteostatic Energy Cost and Its Use in Analysis of Proteome Trends and Sequence Evolution
【2h】

A Model of Proteostatic Energy Cost and Its Use in Analysis of Proteome Trends and Sequence Evolution

机译:蛋白质能量消耗模型及其在蛋白质组趋势和序列演化分析中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A model of proteome-associated chemical energetic costs of cells is derived from protein-turnover kinetics and protein folding. Minimization of the proteostatic maintenance cost can explain a range of trends of proteomes and combines both protein function, stability, size, proteostatic cost, temperature, resource availability, and turnover rates in one simple framework. We then explore the ansatz that the chemical energy remaining after proteostatic maintenance is available for reproduction (or cell division) and thus, proportional to organism fitness. Selection for lower proteostatic costs is then shown to be significant vs. typical effective population sizes of yeast. The model explains and quantifies evolutionary conservation of highly abundant proteins as arising both from functional mutations and from changes in other properties such as stability, cost, or turnover rates. We show that typical hypomorphic mutations can be selected against due to increased cost of compensatory protein expression (both in the mutated gene and in related genes, i.e. epistasis) rather than compromised function itself, although this compensation depends on the protein's importance. Such mutations exhibit larger selective disadvantage in abundant, large, synthetically costly, and/or short-lived proteins. Selection against increased turnover costs of less stable proteins rather than misfolding toxicity per se can explain equilibrium protein stability distributions, in agreement with recent findings in E. coli. The proteostatic selection pressure is stronger at low metabolic rates (i.e. scarce environments) and in hot habitats, explaining proteome adaptations towards rough environments as a question of energy. The model may also explain several trade-offs observed in protein evolution and suggests how protein properties can coevolve to maintain low proteostatic cost.
机译:细胞蛋白质组相关化学能量成本的模型来自蛋白质转换动力学和蛋白质折叠。尽量减少蛋白质维持费用可以解释蛋白质组学的一系列趋势,并在一个简单的框架内将蛋白质功能,稳定性,大小,蛋白质维持成本,温度,资源利用率和周转率结合在一起。然后,我们探究了ansatz的观点,即维持蛋白水解后剩余的化学能可用于繁殖(或细胞分裂),因此与有机体适应性成正比。与较低的典型有效酵母菌群数量相比,选择较低的蛋白水解抑制剂成本具有重要意义。该模型解释并量化了由于功能突变和其他特性(例如稳定性,成本或周转率)的变化而引起的高度丰富蛋白质的进化保守性。我们表明,由于补偿蛋白表达的成本增加(包括突变基因和相关基因,即上位性),而不是功能受损,可以选择典型的亚型突变,尽管这种补偿取决于蛋白的重要性。这样的突变在大量的,大的,合成上昂贵的和/或寿命短的蛋白质中表现出更大的选择性缺点。与不太稳定的蛋白质本身的增加的周转成本相比,而不是错误折叠的毒性本身的选择可以解释平衡的蛋白质稳定性分布,这与最近在大肠杆菌中的发现一致。在低代谢率(即稀缺环境)和炎热的栖息地中,蛋白体选择压力更大,这解释了蛋白质组适应恶劣环境的问题。该模型还可以解释蛋白质进化中观察到的一些折衷,并提出蛋白质特性如何协同进化以维持较低的蛋白水解成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号